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Abstract. We find a sufficient condition for a weakly differentiable homeomor-
phism in Euclidean space to have a homeomorphic extension to the boundary of its
domain of definition. In a certain sense, this condition is best possible.

1. Introduction

A classical theorem of Carathéodory [3] and Osgood and Taylor [22] asserts that
a conformal mapping between planar Jordan domains extends to a homeomorphism
of their closures. This result can be generalized to quasiconformal mappings in the
plane, see [19, p.42]. On the other hand, Kuusalo [18] showed that for any n ≥ 3
there exists a Jordan domain Ω ⊂ Rn and a quasiconformal bijection f : Ω → Ω
that does not have a continuous boundary extension. Therefore, higher-dimensional
versions of the Carathéodory extension theorem must include additional assumptions
on the domains in question.

Väisälä [25] established an analog of Carathéodory’s theorem for Jordan domains
that are quasiconformally equivalent to a ball. Later, he and Näkki introduced local
conditions on the boundaries of domains Ω and Ω′ that guarantee that every quasi-
conformal map f : Ω → Ω′ extends to a given boundary point. In many situations
these boundary properties (called P1 and P2 in [26] and quasiconformal flatness and
accessibility in [21]) turn out to be the optimal assumptions, see [11].

Recently, Ryazanov, Srebro and Yakubov [23] generalized the Carathéodory theo-
rem in a different direction by proving that every BMO-qc homeomorphism of planar
Jordan domains extends to a homeomorphism of their closures. Later, same authors
and Martio [20] proved the extension property for BMO-qc automorphisms of a half-
space in Rn. (See also [4]). Recall that for a quasiconformal mapping f in Rn the
distortion function KO(x, f) = |Df(x)|n/J(x, f) is bounded a.e. (Here |Df(x)| is the
operator norm of the differential matrix Df(x) and J(x, f) = det Df(x).) In con-
trast, a BMO-qc homeomorphism in general has an unbounded distortion function
that is majorized a.e. by a function in the class BMO. By [12, Theorem 18.3.2] this
condition is equivalent (on bounded domains) to the integrability of exp(λKO(·, f))
for some λ > 0.

In the present paper we establish the sharp Orlicz-type condition on KO(·, f) under
which Carathéodory-type results still hold. This condition, usually called subexpo-
nential integrability, was initially introduced in [15]; see section 2 for its precise for-
mulation. We also prove a result concerning extension of the inverse mapping; note
that in contrast to the quasiconformal case, the inverse of a mapping with subexpo-
nentially integrable distortion may not belong to the same class. It turns out that f−1

can be continuously extended to the boundary under somewhat weaker assumptions
on f , see Corollary 2. Here we state a simplified version of our results.
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Theorem 1. Let Ω ⊂ Rn be a Jordan domain, and let Ω′ ⊂ Rn be a bounded domain
that is quasiconformally equivalent to a ball. Then every homeomorphism f : Ω → Ω′

with subexponentially integrable distortion extends to a homeomorphism f̄ : Ω → Ω′.

The precise statements and proofs are in Section 3. Their sharpness is established
in Section 4. In Section 5 we consider mappings of finite distortion from the halfspace
onto itself. More specifically, we generalize the Riemann-Schwarz reflection principle
and the Ahlfors-Beurling quasisymmetry theorem.

2. Preliminaries

Throughout the paper Ω and Ω′ are domains (i.e. nonempty connected open sets) in
Rn. A mapping f ∈ W 1,1(Ω; Rn) is called a mapping of finite distortion if its Jacobian
determinant J(·, f) is in L1(Ω) and J(x, f) > 0 for a.e. x ∈ Ω such that |Df(x)| 6= 0.
Define the outer distortion KO of f by KO(x, f) = |Df(x)|n/J(x, f) when |Df(x)| 6=
0 and KO(x, f) = 1 otherwise. The function KO(·, f) is subexponentially integrable if
there exists an Orlicz function A (i.e. an increasing C∞-diffeomorphism A : (0,∞) →
(0,∞)) such that

(1)

∫ ∞

1

A′(t)

t
dt = ∞,

(2) ∃t0 ∈ (0,∞) such that tA′(t) increases to infinity on [t0,∞),

and
∫

Ω
exp(A(KO(x, f)))dx < ∞. Note that in the literature the above integrability

conditions on |Df | and KO(·, f) are often stated in their local forms. Naturally, we
need global integrability in order to study the boundary behavior of f .

Of course, the condition
∫

Ω
exp(A(KO(x, f)))dx < ∞ forces Ω to have a finite

Lebesgue measure. However, this does not mean that our results are not applicable
to mappings in domains of infinite measure. As in the proof of Theorem 6 below,
one can infer the existence of boundary values by considering appropriate bounded
subdomains.

Let f : Ω → Rn be a mapping with subexponentially integrable outer distortion.
By (2) we have limt→∞A(t)/ log t = ∞, which in turn implies that exp(A(t)) domi-
nates tp for every p ∈ [1,∞). Therefore, KO(·, f) ∈ Lp(Ω) for 1 ≤ p < ∞. By [15,
Theorem 1.1], f is continuous in Ω and is either constant or both open and discrete.
The proof of Theorem 1.1 [15] also demonstrates that

∫
Ω

P (|Df(x)|n)dx < ∞ for
some Orlicz function P such that

(3)

∫ ∞

1

P (t)

t2
dt = ∞,

and

(4) ∃t0 ∈ (0,∞) such that t 7→ t−n/(n+1)P (t) is increasing on (t0,∞).

Now we present some metric and topological definitions, most of which can be
found in [11, 21, 26]. Given Ω ⊂ Rn, a measurable function ω : Ω → [0,∞] and a
path family Γ in Ω, define the weighted modulus of Γ by

modω(Γ) = inf

{∫
Ω

ρ(x)nω(x) dx

}
,
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where the infimum is taken over all Borel functions ρ : Ω → [0,∞) such that
∫

γ
ρ ≥ 1

for each γ ∈ Γ. If E and F are subsets of Ω, we write

modω(E, F ; Ω) = modω(ΓE,F ),

where ΓE,F is the family of all paths connecting E and F in Ω. The subscript ω is
dropped when ω ≡ 1.

We use notations B(a, r) = {x ∈ Rn : |x − a| < r} and B = B(0, 1), where | · | is
the Euclidean norm in Rn. Given a mapping f : Ω → Rn and a point b ∈ ∂Ω, define
the cluster set of f at b by C(f, b) =

⋂
r>0 f(B(b, r) ∩ Ω).

The following definition introduces a few concepts related to domains in the Eu-
clidean space. Here and in the sequel the topological terms (open set, closure, neigh-
borhood, etc.) are understood in the sense of the topology of Rn, unless noted
otherwise.

Definition. A domain Ω is
(a) a Jordan domain if ∂Ω is homeomorphic to the (n − 1)-dimensional sphere

Sn−1.
(b) locally connected at b ∈ ∂Ω if for any r > 0 there exists an open set U ⊂ B(b, r)

such that b ∈ U and U ∩ Ω is connected.
(c) finitely connected at b ∈ ∂Ω if for any r > 0 there exists an open set U ⊂ B(b, r)

such that b ∈ U and U ∩ Ω consists of a finite number of connected components.
(d) QC flat at b ∈ ∂Ω if for any subdomains E, F ⊂ Ω one has mod(E, F ; Ω) = ∞

whenever b ∈ E ∩ F .
(e) QC accessible at b ∈ ∂Ω if for any neighborhood U of b there is a continuum

E ⊂ Ω and a constant δ > 0 such that mod(E, F ; Ω) ≥ δ for every subdomain F ⊂ Ω
that meets ∂U and has point b on its boundary.

Note that the term “QC flatness” is often used (e.g. [6, 7, 28]) to mean a different
property which implies both QC flatness and QC accessibility. Any Jordan domain is
locally connected at every point of its boundary [27, p.66]. A planar Jordan domain is
also QC flat and QC accessible at every boundary point, as follows from the Riemann
mapping theorem and the Carathéodory extension theorem. In general, Ω ⊂ Rn is
both QC flat and QC accessible at every boundary point if any one of the following
conditions is satisfied: (a) ∂Ω is a C1 manifold [26, Theorem 17.12]; (b) Ω is locally
quasiconformally collared [26, Theorem 17.10]; (c) Ω is a quasiextremal distance
domain [11, Lemma 3.1]; (d) Ω is a uniform domain [10, Lemma 2.18].

3. Existence of a continuous boundary extension

Theorem 2. Let Ω and Ω′ be bounded domains in Rn, and let f : Ω → Ω′ be a
homeomorphism of finite distortion. Suppose that

∫
Ω

exp(A(KO(x, f)))dx < ∞ for
some Orlicz function A that satisfies (1) and (2).

If Ω is locally connected at b ∈ ∂Ω and if some point of C(f, b) is QC accessible
for Ω′, then limx→b f(x) exists.

Proof. Since f is a homeomorphism, it follows that C(f, b) ⊂ ∂Ω′. Let b′ ∈ C(f, b)
be a QC accessible point for Ω′. Suppose that C(f, b) contains another point, say
b′′. Let V be a neighborhood of b′ such that b′′ /∈ V , and let E ⊂ Ω′ be a continuum
whose existence is guaranteed by the definition of QC accessibility.

Choose a sequence of neighborhoods Uj of b such that diam(Uj) → 0 and Uj ∩Ω is
connected for each j. By [17, Theorem 5.3] we have modKO(·,f)n−1(Uj, f

−1(E); Ω) → 0.
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Using [14, Lemma 3.2] and [16, Theorem 1.2], we conclude that the assumptions of
Theorem 4.1 [17] are fulfilled. The latter theorem yields

mod(f(Uj), E; Ω′) ≤ modKO(·,f)n−1(Uj, f
−1(E); Ω),

which implies that mod(f(Uj), E; Ω′) → 0 as j →∞. On the other hand, f(Uj) is a

subdomain of Ω′ such that b′, b′′ ∈ f(Uj), hence f(Uj)∩∂V 6= ∅. This contradicts the
assumption that b′ is QC accessible. Therefore, C(f, b) contains only one point. �

Corollary 1. Let Ω, Ω′ and f be as in Theorem 2. Suppose in addition that Ω is
locally connected on the whole boundary and Ω′ is QC accessible at every boundary
point. Then f has a continuous extension to Ω.

Proof. Define f(b) = limx→b f(x) for every boundary point b. We only have to check
that limn→∞ f(bn) = f(b) for any sequence {bn} ⊂ ∂Ω converging to b. This is done
by a standard argument: for every n choose xn ∈ Ω such that |xn − bn| < 1/n and
|f(xn) − f(bn)| < 1/n. Since xn → b, it follows that f(xn) → f(b), which it turn
implies f(bn) → f(b). �

The next theorem concerns the existence of the continuous boundary extension of
f−1. In order to state it in a precise form, we need to define the inner distortion
function KI(·, f). Let D]f(x) be the cofactor matrix of Df(x). Define KI(x, f) =
|D]f(x)|n/J(x, f)n−1 if |D]f(x)| 6= 0 and KI(x, f) = 1 otherwise. It is easy to see
that KI(x, f) ≤ KO(x, f)n−1 and KO(x, f) ≤ KI(x, f)n−1 (e.g. [12, section 6.4]).

Theorem 3. Let Ω and Ω′ be bounded domains in Rn, and let f : Ω → Ω′ be a
homeomorphism of finite distortion. Suppose that

∫
Ω

KI(x, f)dx < ∞ and there exists
an Orlicz function P such that (3) and (4) are satisfied and

∫
Ω

P (|Df(x)|n)dx < ∞.
If Ω is finitely connected at two distinct points b1, b2 ∈ ∂Ω, then Ω′ is not QC flat

at any point of C(f, b1) ∩ C(f, b2).

By virtue of the results stated in Section 2, the analytic assumptions of Theorem 3
hold for every mapping that satisfies the assumptions of Theorem 2.

Proof. For j = 1, 2 let Uj be a neighborhood of bj such that Uj ∩ Ω has finitely
many components and d = dist(U1, U2) > 0. Now if b′ ∈ C(f, b1) ∩ C(f, b2), then

b′ ∈ f(U1 ∩ Ω) ∩ f(U2 ∩ Ω). Let Vj be a connected component of Uj ∩ Ω with the

property that b′ ∈ f(Vj). We have

modKI(·,f)(V1, V2; Ω) ≤
∫

Ω

d−nKI(x, f) dx < ∞,

since we can take ρ(x) ≡ 1/d in the definition of the weighted modulus.
As in the above proof of Theorem 2, we can apply Theorem 4.1 [17] to obtain

mod(f(V1), f(V2); Ω
′) ≤ modKI(·,f)(V1, V2; Ω) < ∞.

Therefore, Ω′ is not QC flat at b′. �

Corollary 2. Let Ω, Ω′ and f be as in Theorem 3. Suppose in addition that Ω is
finitely connected on the whole boundary and Ω′ is QC flat at every boundary point.
Then f−1 has a continuous extension to Ω′.

Proof. Consider a boundary point b′ ∈ ∂Ω′. If the cluster set C(f−1, b′) contains
two distinct points b1, b2, then b′ ∈ C(f, b1) ∩ C(f, b2), which in view of Theorem 3
contradicts the QC flatness at b′. Therefore, f−1 has a limit at b′. As in Corollary 1,
we see that f−1 is continuous in Ω′. �
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Corollary 3. Let Ω, Ω′ and f be as in Theorem 2. Suppose in addition that Ω is
locally connected on the whole boundary and Ω′ is QC accessible and QC flat at every
boundary point. Then f extends to a homeomorphism of Ω onto Ω′.

4. Sharpness of the integrability conditions

Our first example shows that the assumption on the size of KO(·, f) in Theorem 2
and Corollary 1 cannot be weakened.

Theorem 4. Suppose that A is an Orlicz function such that∫ ∞

1

A′(t)

t
< ∞.

Then there exist domains Ω and Ω′ satisfying the assumptions of Corollary 1 and a
homeomorphism of finite distortion f : Ω → Ω′ such that

(5)

∫
Ω

exp(A(KO(x, f)))dx < ∞,

but f has no continuous extension to Ω.

Proof. Following [15], define

ρ(t) = exp

(
3n

∫ t

0

ds

sA−1(log e
s
)

)
, 0 ≤ t ≤ 1.

Consider the sets

Ω = {x ∈ B : xn < 0}
and

Ω′ = {x ∈ B(0, ρ(1)) \ B : xn < 0}.
Clearly, Ω is locally connected on the boundary and Ω′ is QC accessible at every
boundary point (see [26], Remark 17.24(3)).

Define f : Ω → Ω′ by the rule

f(x) =
x

|x|
ρ(|x|).

Thus f will map homeomorphically the set Ω onto Ω′. Following the proof of The-
orem 1.2 in [15] we find that f is a mapping of finite distortion and (5) holds.
Since ρ(0) = 1, it follows that the cluster set of f at the origin is the half-sphere
{x : |x| = 1, xn ≤ 0}. Thus f cannot be continuously extended to the origin. �

Next we demonstrate the sharpness of conditions in Theorem 3 and Corollary 2.

Theorem 5. There exist domains Ω and Ω′ and a homeomorphism f : Ω → Ω′

of finite distortion such that Ω and Ω′ satisfy the assumptions of Corollary 2, f is
Lipschitz continuous and ∫

Ω

(KI(x, f))q dx < ∞

for all 0 < q < 1, but f−1 has no continuous extension to Ω′.
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Proof. We set s(x) =
√

x2
1 + x2

2 + ... + x2
n−1 and consider the sets

Ω = Ω′ = {x ∈ Rn : x1 > 0, s(x) < 1 and |xn| < 2}.
Since a half-cylinder is bilipschitz equivalent to a ball, it follows that Ω and Ω′ satisfy
the assumptions of Corollary 2.

Following [2], define f : Ω → Ω′ by the rule

f(x) =

{
(x1, x2, ..., xn−1, s(x)xn) for |xn| < 1;

(x1, x2, ..., xn−1, [2(|xn| − 1) + (2− |xn|)s(x)] sgn xn) for 1 ≤ |xn| ≤ 2.

The construction of Example 1 in [2] shows that f is Lipschitz and J(x, f) > 0 for
every x ∈ Ω. So f is a mapping of finite distortion and a direct computation shows
that ∫

Ω

(KI(x, f))q dx ≤ Cn

∫
Ω

s(x)−q(n−1)dx < ∞.

On the other hand, f(x) → 0 whenever s(x) → 0 and |xn| ≤ 1, which implies
that C(f−1, 0) = {x : x1 = · · · = xn−1 = 0, |xn| ≤ 1}. Therefore, f−1 cannot be
continuously extended to the boundary of Ω′. �

5. Self-maps of the halfspace

The Riemann-Schwarz reflection principle for conformal mappings has been ex-
tended by Väisälä to the quasiconformal case [26, Theorem 35.2]. Recently it has
been generalized to BMO-qc mappings in [20, 23]. Using the results in Section 3 we
can further weaken the restrictions concerning the distortion function of a mapping.

Let Hn
± = {x ∈ Rn : ±xn > 0} be the halfspaces separated by the hyperplane

P = {x ∈ Rn : xn = 0}. The reflection in P is given by S(x1, . . . , xn) = (x1, . . . ,−xn).

Theorem 6. Let Ω and Ω′ be subdomains of Hn
+. Suppose that the sets E = ∂Ω ∩ P

and E ′ = ∂Ω′ ∩ P are relatively open in ∂Ω and ∂Ω′ respectively. Let f : Ω → Ω′ be
a homeomorphism such that

⋃
x∈E C(f, x) = E ′. Suppose further that the restriction

of f to every bounded subdomain of Ω is a mapping of subexponentially integrable
distortion.

Then f extends to a homeomorphism from D = Ω ∪ E ∪ S(Ω) onto D′ = Ω′ ∪
E ′ ∪ S(Ω′). The extended mapping also has subexponentially integrable distortion on
bounded subdomains.

Proof. It is easy to see that Ω is locally connected at every point of E, and Ω′ is both
QC flat and QC accessible at every point of E ′. By Theorem 2 the mapping f has
a continuous extension F : Ω ∪ E → Ω′ ∪ E ′, which is a homeomorphism by virtue
of Theorem 3. For x ∈ S(Ω) we define F (x) = S(f(S(x))), thus making F into a
homeomorphism of D onto D′.

Let G be a bounded subdomain of D that is symmetric about P. Since f ∈
W 1,1(G ∩Hn

+), it follows that f is ACL in G ∩Hn
+ [5, Theorem 4.9.2]. Therefore, F

is ACL in G, and the same theorem yields F ∈ W 1,1(G). It remains to observe that
KO(·, F ) is a.e. equal to the symmetric extension of KO(·, f). �

The idea of the proof of Theorem 4 can be used to show that the subexponential
integrability assumption in Theorem 6 cannot be weakened.

Finally we present a generalization of the classical theorem of Ahlfors and Beurling
that says that the trace of a quasiconformal automorphism of H2

+ is quasisymmet-
ric [1, p.65]. It should be noted that Ahlfors and Beurling also proved that every
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quasisymmetric homeomorphism of R extends to a quasiconformal automorphism
of H2

+. It would be interesting to find a necessary and sufficient condition for a
homeomorphism of R to be the trace of a mapping with (locally) subexponentially
integrable distortion. For results in this direction, see [4, 24].

Theorem 7. In addition to the assumptions of Theorem 6, assume that n = 2 and
Ω = Ω′ = H2

+. Then for each s, t ∈ R

M−1 ≤ F (s + t)− F (s)

F (s)− F (s− t)
≤ M,

where M = A exp
(
Bt−2

∫
B(s,2t)∩H2

+
KO(x, f) dx

)
with absolute constants A and B.

Proof. This is an immediate generalization of Theorem 2.1 in [24], and it can be
proved in exactly the same way with the help of Theorem 4.1 [17]. �

For n > 2, Gehring [8, 9] proved that a quasiconformal automorphism of the half-
space Hn

+ induces a quasiconformal automorphism of its boundary P. This follows
from the fact (also established by Gehring) that quasiconformal mappings admit an
equivalent metric definition. However, it seems difficult, if not impossible, to find
a metric definition of mappings of finite (in particular subexponentially integrable)
distortion [13]. This presents an obstacle to obtaining an analog of Gehring’s result
for the mappings of finite distortion.

Indeed, consider a homeomorphism f : Hn
+ → Hn

+ such that KO(·, f) is subex-
ponentially integrable on bounded subdomains of Hn

+. By Theorem 6 f induces a
homeomorphism F : P → P. If KO(·, f) is bounded in a neighborhood of every point
of P, then F can be shown to be a mapping of finite distortion. However, no integra-
bility assumption on KO(·, f) can exclude the possibility that limx→b KO(x, f) = ∞
for every b ∈ P. At present it remains unclear which regularity properties are pos-
sessed by the induced boundary mapping.
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