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Abstract. This paper is concerned with strong solutions of uniformly elliptic
equations of non-divergence type in the plane. First, we use the notion of
quasiregular gradient mappings to improve Morrey’s theorem on the Hölder
continuity of gradients of solutions. Then we show that the Gilbarg-Serrin
equation does not produce the optimal Hölder exponent in the considered class
of equations. Finally, we propose a conjecture for the best possible exponent
and prove it under an additional restriction.

1. Introduction and notation

Let Ω be a domain in R2, which will be henceforth identified with the complex
plane C. We consider the following second-order equation in non-divergence form:

(1.1) Tr(AD2u) = auxx + 2buxy + cuyy = 0 a.e. in Ω,

where A =
(

a b
b c

)
is a symmetric 2× 2 matrix with measurable real coefficients and

D2u is the Hessian matrix of u. In what follows it is assumed that A is uniformly
elliptic, that is,

(1.2) |ξ|2/
√

K ≤ 〈A(z)ξ, ξ〉 ≤
√

K|ξ|2, ∀ξ ∈ R2, a.e. z ∈ Ω

for some constant K ∈ [1,∞). Kenig’s survey [26] is an excellent general reference
for such equations.

A key feature of solutions of many linear and nonlinear elliptic PDE is a “uniform
spread” of the eigenvalues of the Hessian matrix [12, 2.2]. In fact, once this prop-
erty is established, the regularity of solutions can be studied without any further
references to the PDE itself [12, Ch.4]. For this reason, our results concerning the
linear equation (1.1) are applicable to some nonlinear PDE as well. See [8, 9, 10, 23]
for examples of such equations.

A real-valued function u ∈ W 2,2
loc (Ω) is called a strong solution of equation (1.1)

if it satisfies (1.1) a.e. in Ω. Strictly speaking, u should be called an L2-strong
solution, but we are not going to consider Lp-strong solutions for p 6= 2. The main
reason is that the Dirichlet problem for (1.1) has a unique L2-strong solution [9, 49].
Furthermore, the class of Lp-strong solutions does not depend on p when p lies
between 2K/(K +1) and 2K/(K−1) [2, 4, 6, 39]. Finally, for values of p outside of
this interval, Lp-strong solutions can be somewhat pathological [3, 4, 11, 25]. We
therefore restrict our attention to the strong solutions whose second derivatives are
locally square integrable.

Every strong solution of (1.1) belongs to the Hölder class C
1,1/K
loc (Ω). This

result can be found in the seminal work of Morrey [34] or in [17, 37] and Ch. 12
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of [20]. Safonov [46] proved that the validity of Morrey’s estimates distinguishes
two-dimensional elliptic equations from their analogues in higher dimensions.

Let us introduce the complex differential operators

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
=

e−iϕ

2

(
∂

∂r
− i

r

∂

∂ϕ

)
;

∂

∂z̄
=

1
2

(
∂

∂x
+ i

∂

∂y

)
=

eiϕ

2

(
∂

∂r
+

i

r

∂

∂ϕ

)
;

(1.3)

where z = x + iy = reiϕ, x, y, r, ϕ ∈ R.
Suppose that u is a strong solution of (1.1). Following [34], we consider its com-

plex gradient f = ∂u/∂z as a mapping from Ω into C. Then f is a K-quasiregular
mapping, which means that f ∈ W 1,2

loc (Ω;C) and

(1.4)
∣∣∣∣
∂f

∂z̄

∣∣∣∣ ≤ k

∣∣∣∣
∂f

∂z

∣∣∣∣ , k =
K − 1
K + 1

,

a.e in Ω. See, e.g. [5, 34, 49]. By Morrey’s theorem [34] f ∈ C
0,1/K
loc (Ω). The

exponent 1/K is best possible in the class of all K-quasiregular mapping, since this
class contains the mapping z 7→ |z|1/K−1z.

However, our f has an additional property of being the complex gradient of a
real-valued function. In particular, ∂f/∂z̄ is real-valued, because

∂f

∂z̄
=

∂2u

∂z̄∂z
=

1
4
∆u

a.e. in Ω. We call f ∈ W 1,2
loc (Ω;C) a K-quasiregular gradient mapping (K ≥ 1)

if (1.4) holds and Im ∂f/∂z̄ = 0 a.e. in Ω. By the above, the complex gradient of
every strong solution of (1.1) is a K-quasiregular gradient mapping.

A partial converse of the last statement is also true. Namely, if f : Ω → C is
a K-quasiregular gradient mapping and Ω is simply connected, then there exists
a real-valued function u ∈ W 2,2

loc (Ω) (unique up to an additive constant) such that
∂u/∂z = f . This can be derived from the Poincaré lemma as in [28]. If Ω is not
simply connected, the potential u might not exist globally. For instance, f(z) =
iz−1 is a holomorphic (i.e. a 1-quasiregular gradient) mapping in the annulus
{z : 2−1 < |z| < 2}. If f = ∂u/∂z for some real-valued function u, then

−2π = Re
∫

|z|=1

f(z)dz = − Im
∫ 2π

0

eiϕf(eiϕ)dϕ =
1
2

∫ 2π

0

∂u

∂ϕ
dϕ = 0,

a contradiction. In any case, once the existence of u is known, it can be shown to be
a strong solution of an equation of the form (1.1) with the ellipticity condition (1.2).
This result goes back to Pucci [41]. See also [4, 32].

In [28] it was proved that K-quasiregular gradient mappings belong to the little
Hölder space c

0,1/K
loc (Ω). In other words, for every compact set E ⊂ Ω

lim
δ→0

δ−1/Kω(δ, E) = 0,

where ω(δ, E) stands for the modulus of continuity of f on E. This leads one to
expect that strong solutions of (1.1) are locally C1,α for some α > 1/K. Our
Theorem 1.1 confirms that this is indeed the case.



ELLIPTIC EQUATIONS IN THE PLANE 3

For divergence form equations the precise degree of Hölder regularity has been
established by Piccinini and Spagnolo [40] (see also [21, 35, 44, 50]). It turns out
that any weak solution of the equation

(1.5) div(A(z)∇u(z)) = 0,

with A as in (1.2), is locally Hölder continuous with the exponent 1/
√

K. The
sharpness of this result is demonstrated by the following example due to Meyers [33].
The function u(z) = x|z|1/

√
K−1, z = x + iy, is a weak solution of (1.5) with

(1.6) A(z) =
(

1 + (K − 1)x2/|z|2 (K − 1)xy/|z|2
(K − 1)xy/|z|2 1 + (K − 1)y2/|z|2

)
.

This “pathological” differential equation is often associated (e.g. in [7] and [21])
with the name of Serrin, who studied it in [48].

Gilbarg and Serrin [19] introduced a certain class of non-divergence form opera-
tors which includes (1.6). Since then, such operators have become a frequent source
of counterexamples [29, 31, 36, 42, 47]. In view of the Piccinini-Spagnolo theorem
one might conjecture that the Gilbarg-Serrin operator with matrix (1.6) is the most
“pathological” with a given ellipticity constant K (that is, it exhibits the lowest
degree of regularity of solutions). D’Onofrio and Greco [15] recently established
the best possible C1,α-regularity result for this equation in all dimensions n ≥ 2.
In particular, they proved that every strong solution of (1.1) with the coefficient
matrix (1.6) is in C1,α

loc , where

(1.7) α = α
(1)
K :=

1
2

(√
1 + 14K−1 + K−2 − 1−K−1

)

cannot be replaced by any larger value.
However, in section 4 we construct a non-divergence form equation which is not

of the Gilbarg-Serrin type and whose solutions are only C1,αK

loc with αK < α
(1)
K .

Moreover, Theorem 3.1 shows that αK is the optimal exponent for all separated
solutions of (1.1) (in particular, for all homogeneous solutions). It seems possible
that the optimal exponent in the general case should be the same as in Theorem 3.1.
So far, the best Hölder estimate we can prove for general solutions of (1.1) is the
following.

Theorem 1.1. Suppose that u ∈ W 2,2
loc (Ω) is a strong solution of (1.1) in a domain

Ω ⊂ R2, and that (1.2) holds. Then u ∈ C1,α
loc (Ω), where

(1.8) α = α
(2)
K =

1
2(K + 1)

(√
33 + 30K−1 + K−2 − 3−K−1

)
.

One can show that

1
K

< α
(2)
K < αK < α

(1)
K < min

(
1√
K

,
3
K

)

for all K > 1. Furthermore,

lim
K→∞

Kα
(2)
K =

√
33− 3

2
≈ 1.37;

lim
K→∞

KαK = lim
K→∞

Kα
(1)
K = 3.
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Although Theorem 1.1 does not provide optimal Hölder exponents, it does pro-
vide the first Hölder regularity result for equation (1.1) beyond the long-standing
threshold 1/K.

Acknowledgements. We would like to thank Luigi D’Onofrio, Tadeusz Iwaniec
and Carlo Sbordone for valuable discussions.

2. Proof of Theorem 1.1

We start by deriving a lower estimate for the Jacobian determinant of a quasireg-
ular gradient mapping. Recall that we defined f ∈ W 1,2

loc (Ω;C) to be a K-quasiregu-
lar gradient mapping if

(2.1) Im
∂f

∂z̄
= 0 and

∣∣∣∣
∂f

∂z̄

∣∣∣∣ ≤ k

∣∣∣∣
∂f

∂z

∣∣∣∣ , where k =
K − 1
K + 1

,

a.e. in Ω ⊂ C. The quasiregularity assumption (1.4) alone implies that f has a
non-negative Jacobian. In fact, if one writes Df for the real derivative matrix of f
(i.e. Df ∈ R2×2), then its determinant Jf = det Df satisfies

(2.2) Jf ≥ K−1|Df |2, a.e. in Ω,

where |Df | is the operator norm of Df . Inequality (2.2) directly follows from (1.4)
and the elementary identities

|Df | =
∣∣∣∣
∂f

∂z

∣∣∣∣ +
∣∣∣∣
∂f

∂z̄

∣∣∣∣ ;

Jf (z) =
∣∣∣∣
∂f

∂z

∣∣∣∣
2

−
∣∣∣∣
∂f

∂z̄

∣∣∣∣
2

.

We shall replace (2.2) with a different estimate for which the full strength of the
assumption (2.1) can be exploited. Since quasiregular mappings are differentiable
a.e. [43, 45], we can use partial derivatives of f in the polar coordinates r, ϕ (1.3)
to define real-valued functions p, q ∈ L2

loc(Ω) such that

ieiϕr−1 ∂f

∂ϕ
(z) = p(z) + iq(z), z = reiϕ,

for a.e. z ∈ Ω. Since p2 + q2 = r−2|∂f/∂ϕ|2 ≤ |Df |2, it follows from (2.2) that

Jf ≥ K−1(p2 + q2).

The latter inequality is sharp in the class of K-quasiregular mappings, but it can
be substantially improved in the subclass formed by gradients.

Lemma 2.1. Let f : Ω → C be a K-quasiregular gradient mapping. Then for a.e.
z ∈ Ω

(2.3) Jf (z) ≥ K−1p(z)2 +
2

K + 1
q(z)2 =

1− k

1 + k
p(z)2 + (1− k)q(z)2.

Proof. Since ∂f/∂z̄ is real-valued, so is the function

s(z) = 2
∂f

∂z̄
(z)− p(z) = eiϕ ∂f

∂r
(z) + iq(z), z = reiϕ.

Note that
∂f

∂z
=

e−2iϕ

2
(s− p− 2iq) and

∂f

∂z̄
=

1
2
(s + p).
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We can estimate s(z) using (1.4):

(s(z) + p(z))2 ≤ k2((s(z)− p(z))2 + 4q(z)2),

from which it follows by expanding squares and rearranging terms, that
∣∣∣∣s(z) +

1 + k2

1− k2
p(z)

∣∣∣∣ ≤
2k

1− k2

√
p(z)2 + (1− k2)q(z)2.

This implies the following estimate for the Jacobian determinant of f .

Jf =
∣∣∣∣
∂f

∂z

∣∣∣∣
2

−
∣∣∣∣
∂f

∂z̄

∣∣∣∣
2

= −Re
(

∂f

∂r

i

r

∂f

∂ϕ

)

= −Re
(

eiϕ
∂f

∂r

eiϕi

r

∂f

∂ϕ

)
= −Re((s + iq)(p + iq)) = q2 − ps

≥ 1 + k2

1− k2
p2 + q2 − 2k|p|

1− k2

√
p2 + (1− k2)q2.

(2.4)

For the purpose of integrating the Jacobian it is preferable to have an estimate that
is linear in p2 and q2. Using the arithmetic-geometric mean inequality, we obtain

2|p|
√

p2 + (1− k2)q2 ≤ 2p2 + (1− k2)q2.

From this and (2.4) the desired estimate (2.3) follows immediately. ¤

Since Lemma 2.1 is a key to subsequent integral Jacobian estimates, it is natural
to inquire about its sharpness. Theorem 4.1 gives an example of a K-quasiregular
gradient mapping for which (2.4) turns into an equality for a.e. ϕ ∈ [0, 2π]. The
same cannot be said about (2.3), however. One could try to improve (2.3) by using
a modified arithmetic-geometric mean inequality 2ab ≤ µa2 + µ−1b2, µ > 0. Since
this leads only to a very small improvement in the Hölder exponent (1.8), we do
not pursue this matter here.

Proof of Theorem 1.1. First, let us introduce the notation D(z0, r) = {z ∈ C :
|z − z0| < r}. Also, fix K > 1 and let α = α

(2)
K .

Suppose that u is as in the statement of the theorem; then f = ∂u/∂z is a K-
quasiregular gradient mapping from Ω to C. Let z0 ∈ Ω and 0 < R < dist(z0, ∂Ω).
Our goal is to prove that

(2.5)
∫

D(z0,r)

|Df(z)|2dL2(z) ≤ K
( r

R

)2α
∫

D(z0,R)

|Df(z)|2dL2(z), 0 ≤ r ≤ R,

where L2 is the 2-dimensional Lebesgue measure. Once we have (2.5), Morrey’s
lemma [20, 12.2] will imply f ∈ C0,α

loc (Ω), i.e. the conclusion of the theorem.
Without loss of generality we may assume that z0 = 0 and R = 1. Recall that

K−1|Df |2 ≤ Jf ≤ |Df |2 by virtue of Hadamard’s determinant inequality and (2.2).
Thus the estimate (2.5) will follow once we prove

(2.6)
∫

D(0,r)

Jf (z)dL2(z) ≤ r2α

∫

D(0,1)

Jf (z)dL2(z), 0 ≤ r ≤ 1.

Let J(r) denote the left-hand side of (2.6). It is evident that J is an increasing
absolutely continuous function on the interval [0, 1]. Following Morrey [34], we are
going to estimate its derivative J ′(r) from below for almost all r ∈ (0, 1).
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For a.e. r ∈ (0, 1) the function ϕ 7→ f(reiϕ) is absolutely continuous and its
derivative is square integrable. This allows us to expand it into the uniformly
converging Fourier series

(2.7) f(reiϕ) =
∑

n∈Z
cn(r)einϕ,

where

cn(r) =
1
2π

∫ 2π

0

f(reiϕ)e−inϕdϕ, n ∈ Z.

Furthermore, the series (2.7) can be differentiated term by term [51, II.2.1] to obtain

∂f(reiϕ)
∂ϕ

=
∑

n∈Z
incn(r)einϕ,

with the latter series converging in L2[0, 2π]. Let r ∈ (0, 1) be such that for a.e.
ϕ ∈ [0, 2π] the function f is differentiable at reiϕ and (2.1) holds. Using Green’s
formula and Parseval’s theorem, we find

(2.8) J(r) =
1
2i

∫ 2π

0

f̄(reiϕ)
∂f

∂ϕ
(reiϕ)dϕ = π

∑

n∈Z
n|cn(r)|2.

Let dn = ncn(r). Since

p(reiϕ) + iq(reiϕ) =
eiϕi

r

∑

n∈Z
incn(r)einϕ = −1

r

∑

n∈Z
dn−1e

inϕ,

it follows that
∫ 2π

0

p(reiϕ)2dϕ =
2π

r2

∑

n∈Z

∣∣(dn−1 + d̄−n−1)/2
∣∣2

=
π

2r2

∑

n∈Z
|dn−1 + d̄−n−1|2

(2.9)

and
∫ 2π

0

q(reiϕ)2dϕ =
2π

r2

∑

n∈Z

∣∣(dn−1 − d̄−n−1)/2
∣∣2

=
π

2r2

∑

n∈Z
|dn−1 − d̄−n−1|2.

(2.10)

Now integrate (2.3) over ϕ ∈ [0, 2π] to obtain

J ′(r) = r

∫ 2π

0

Jf (reiϕ)dϕ

≥ 1− k

1 + k
r

∫ 2π

0

(
p(reiϕ)2 + (1 + k)q(reiϕ)2

)
dϕ

=
π(1− k)
2r(1 + k)

∑

n∈Z

{|dn−1 + d̄−n−1|2 + (1 + k)|dn−1 − d̄−n−1|2
}

≥ π(1− k)
r(1 + k)

∞∑
n=2

{|dn−1 + d̄−n−1|2 + (1 + k)|dn−1 − d̄−n−1|2
}

.

(2.11)
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On the other hand, (2.8) implies

J(r) = π
∑

n∈Z
n|cn(r)|2 = π

∑

n6=0

|dn|2
n

≤ π

∞∑
n=2

{ |dn−1|2
n− 1

− |d−n−1|2
n + 1

}
.(2.12)

In order to compare J ′(r) and J(r), we must find the largest possible constant
B such that the inequality

(2.13) |dn−1 + d̄−n−1|2 + (1 + k)|dn−1 − d̄−n−1|2 ≥ B

{ |dn−1|2
n− 1

− |d−n−1|2
n + 1

}

holds for all n ≥ 2. Because of homogeneity of (2.13) it suffices to consider the case
dn−1 = 1, d̄−n−1 = ζ ∈ C. Furthermore, if ζ is replaced with Re ζ, the left-hand
side of (2.13) decreases while the other side increases. So (2.13) reduces to

(2.14) (1 + ζ)2 + (1 + k)(1− ζ)2 ≥ B

{
1

n− 1
− ζ2

n + 1

}
, ζ ∈ R.

Since the left-hand side of (2.14) is at least 2, we can take B = 4 when n ≥ 3. Let
us consider the case n = 2 in more detail. The quadratic polynomial

(1 + ζ)2 + (1 + k)(1− ζ)2 −B(1− ζ2/3) = (2 + k + B/3)ζ2 − 2kζ + (2 + k −B)

is non-negative for all ζ ∈ R if and only if its discriminant is non-positive, that is,

k2 ≤ (2 + k + B/3)(2 + k −B).

The largest value of B that verifies the latter inequality is

(2.15) B =
√

k2 + 16k + 16− k − 2.

Since
√

k2 + 16k + 16−k−2 <
√

33−2 < 4, the value of B given by (2.15) applies
to all n ≥ 2.

Combining (2.11), (2.12) and (2.13), we obtain

(2.16) J ′(r) ≥ B
1− k

1 + k

J(r)
r

, a.e. r ∈ (0, 1).

Using (1.8) and the identity k = (K − 1)/(K + 1), it is straightforward to verify
that

(
√

k2 + 16k + 16− k − 2)
1− k

1 + k
= 2α.

It remains to integrate the differential inequality (2.16) and obtain

J(r) ≤ r2αJ(1).

This completes the proof of (2.6) and of Theorem 1.1. ¤

3. The best possible Hölder exponent for separated solutions

Given a number K > 1, let k = (K − 1)/(K + 1) and define k0 ∈ (0, 1) by the
following equation.

(3.1)
k√

1− k2
tan−1 k√

1− k2
=

k0√
1− k2

0

(
π

2
+ tan−1 k0√

1− k2
0

)
.

Evidently k0 < k. Now define αK ∈ (0, 1) by

(3.2)
1− αK

1 + αK
k = k0, i.e. αK =

k − k0

k + k0
.
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The complicated definition of αK is justified by the fact that it turns out to be the
optimal Hölder exponent for at least a large class of solutions of (1.1).

Theorem 3.1. Let Ω = C. Suppose that u is a strong solution of (1.1) in C, and
that (1.2) holds. Suppose in addition that u has the form

u(reiϕ) = g(r)p(ϕ), r ≥ 0, ϕ ∈ R.

Then u ∈ C1,αK

loc (C), where αK is defined by (3.2). The exponent αK is best possible.

An important special case of Theorem 3.1 is the case when u is homogeneous,
i.e. u(reiϕ) = rsp(ϕ).

The proof of Theorem 3.1 will be carried out in several steps, the first of which
is to reduce the problem to a special case. To avoid trivialities, assume that u is
nonconstant. Then p must be nonconstant as well, for otherwise either u or −u
would violate the maximum principle [20, 9.6]. Continuity of u forces g(0) = 0. The
maximum principle then implies that g(r) 6= 0 for r > 0; we may assume g(r) > 0.
Since u is continuously differentiable, so are the functions g and p. Next we reduce
the problem to the case g′(0) = 0. The first-order Taylor expansion of u at 0 can
be written as

u(reiϕ) = g(r)p(ϕ) = Re(āreiϕ) + o(r),
where a ∈ C. If a 6= 0, then after dividing by r and passing to the limit r → 0 we
obtain

p(ϕ) = |a|g′(0)−1 cos(ϕ + arg a).
Since the function reiϕ 7→ g′(0)rp(ϕ) is linear, the difference

u1(reiϕ) = u(reiϕ)− g′(0)rp(ϕ) = (g(r)− g′(0)r)p(ϕ)

is a solution of (1.1) with the same degree of regularity as u. Moreover, u1 has the
form u1(reiϕ) = g̃(r)p(ϕ) with g̃′(0) = 0.

The assumptions

g(0) = g′(0) = 0, u 6≡ 0, and g(r) > 0 for r > 0,

as well as the hypotheses of Theorem 3.1, are in force for the rest of the section.

Lemma 3.2. (i) u ∈ C1,1
loc (C \ {0});

(ii) the function β(r) := rg′(r)/g(r) is locally absolutely continuous on (0,∞);
(iii) there exist r0 > 0 and H < ∞ such that

(3.3) 1 < β(r) < H, 0 < r < r0.

Proof. Using the absolute continuity of Sobolev functions on lines [16, 4.9.2] in the
context of polar coordinates, we find that p ∈ W 2,2

loc (R) and g ∈ W 2,2
loc (0,∞). Let

f = ∂u/∂z. Then, by (1.3),

(3.4) f(reiϕ) =
e−iϕ

2

(
g′(r)p(ϕ)− i

r
g(r)p′(ϕ)

)
.

Choose r1 > 0 so that g′′(r1) exists. Differentiating (3.4) in r we obtain

lim sup
r→r1

|f(reiϕ)− f(r1e
iϕ)|

|r − r1| ≤ C, ϕ ∈ R,

with C finite and independent of ϕ. Quasiregularity of f now implies [45, II.4.3]

(3.5) lim sup
ϕ→ϕ1

|f(r1e
iϕ)− f(r1e

iϕ1)|
r1|ϕ− ϕ1| ≤ C1, ϕ1 ∈ R,
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where C1 does not depend on ϕ1. Comparing (3.5) with (3.4), we see that p′ is
a Lipschitz function on R. Hence the restriction of f to every circle centered at
the origin is Lipschitz. Invoking Theorem II.4.3 [45] again, we conclude that f is
locally Lipschitz in C \ {0}. This proves (i).

The strong maximum principle [20, 9.6] implies that g′(r) ≥ 0 for all r > 0. Thus
the function β(r) := rg′(r)/g(r) is continuous and nonnegative for r > 0. Since g′

is absolutely continuous on every interval [r1, r2] with 0 < r1 < r2 < ∞, part (ii)
follows.

Next we want to prove that g′(r) is strictly increasing, at least for small values
of r. Since the branch set of the quasiregular mapping f = ∂u/∂z is discrete [45],
there exists r0 > 0 such that f is a local homeomorphism in D(0, r0) \ {0}. Fix
ϕ1 ∈ R such that p(ϕ1) = maxϕ∈R p(ϕ). Since

(3.6) f(reiϕ1) =
e−iϕ1

2
g′(r)p(ϕ1), r > 0,

f maps the halfline {reiϕ1 : r > 0} into another halfline {re−iϕ1 : r > 0}. The
homeomorphism property of f implies that Re eiϕ1f(reiϕ1) strictly increases with
r when 0 < r < r0. Hence g′(r) is a strictly increasing function for 0 < r < r0.
From g(r) =

∫ r

0
g′, we easily obtain β(r) > 1, 0 < r < r0.

Since u(0) = 0, by the maximum principle there exists ϕ2 ∈ R such that p(ϕ2) =
0. We have

(3.7) f(reiϕ2) = − ie−iϕ2g(r)
2r

p′(ϕ2), r > 0.

Since f(0) = 0, Theorem II.4.3 [45] implies that the ratio

maxϕ |f(reiϕ)|
minϕ |f(reiϕ)|

is uniformly bounded for all sufficiently small r > 0. Combining this with (3.6)
and (3.7), we obtain (iii). ¤

Before stating the next lemma, recall that k = (K − 1)/(K + 1) and introduce
an auxiliary function of four real variables

F (x, y, s, t) = (x + y2 + t)2 − k2
{
(x + y2 + 2s− t)2 + 4(s− 1)2y2

}
.

Let us call a positive number r a regular radius if at a.e. point of the circle
{z : |z| = r} the mapping f is differentiable and (1.4) holds. By Fubini’s theorem
a.e. r > 0 is a regular radius.

Lemma 3.3. There exists an interval (a, b) ⊂ R such that b − a ≤ π/2, p(a) =
p(b) = 0, and p(ϕ) 6= 0 for ϕ ∈ (a, b). Define q(ϕ) = p′(ϕ)/p(ϕ), ϕ ∈ (a, b). Then
for every regular radius r > 0 we have

F (q′(ϕ), q(ϕ), β(r), β(r)2 + rβ′(r)) ≤ 0(3.8)

for a.e. ϕ ∈ (a, b).

Proof. Since f−1(0) is a discrete set [43, 45], there exists r > 0 such that the
mapping f = ∂u/∂z does not vanish on the circle {z ∈ C : |z| = r}. Since f is
orientation-preserving and f(0) = 0, it follows that the closed curve ϕ 7→ f(reiϕ),
ϕ ∈ [0, 2π], has index 1 or more with respect to the origin. Therefore, the closed
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curve ϕ 7→ eiϕf(reiϕ), ϕ ∈ [0, 2π], has index 2 or more with respect to the origin.
In particular, it intersects the imaginary axis at least 4 times. Since

Re
(
eiϕf(reiϕ)

)
=

1
2

∂u

∂r
=

1
2
g′(r)p(ϕ),

the function p has at least 4 zeroes on every closed interval of length 2π. This
implies the existence of (a, b) ⊂ R as in the statement of the lemma.

Now let us fix a regular radius r > 0, write β = β(r), and set

ζ = β(r)2 + rβ′(r) =
rg′(r)
g(r)

+
r2g′′(r)

g(r)
,

where β(r) is as in Lemma 3.2. At a.e. point of {z : |z| = r} we have

4
∂f

∂z̄
= ∆u =

∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂ϕ2
=

g(r)
r2

(p′′ + ζp);

−4e2iϕ ∂f

∂z
= −∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂ϕ2
+ 2i

(
1
r

∂2u

∂r∂ϕ
− 1

r2

∂u

∂ϕ

)

=
g(r)
r2

(p′′ + (2β − ζ)p + 2i(β − 1)p′).

(3.9)

Inequality (1.4) can now be rewritten as an ordinary differential inequality that
holds a.e. on (a, b).

(3.10) (p′′ + ζp)2 ≤ k2
{
(p′′ + (2β − ζ)p)2 + 4(β − 1)2(p′)2

}
.

Dividing 3.10 by p2 and using the identity p′′ = q′ + q2, we obtain (3.8). ¤

Let
E = {(s, t) ∈ R2 : F (q′(ϕ), q(ϕ), s, t) ≤ 0 for a.e. ϕ ∈ (a, b)};

Lemma 3.3 says that (β(r), β(r)2 + rβ′(r)) ∈ E for every regular radius r. Fur-
thermore, the definition of F implies that E is a closed set that is convex in the
t-direction. The latter means that if (s, tj) ∈ E, j = 1, 2, then (s, t) ∈ E for all
values of t between t1 and t2.

Lemma 3.4. In the notation of Lemma 3.3, q′(ϕ) < 0 for a.e. ϕ ∈ (a, b).

Proof. Let s0 = lim infr→0 β(r); by (3.3) s0 ≥ 1. We claim that (s0, s
2
0) ∈ E. If

β(r) = s0 for all r > 0, then the claim follows from Lemma 3.3. Suppose that β is
nonconstant. Introduce the sets

B = {β(r) : r > 0 is not a regular radius} and G = {β(r) : r > 0} \B.

Notice that B is the image under β of a set of measure zero. Since β is a locally
absolutely continuous function, B has measure zero as well. Let us consider two
possibilities.

Case 1. The function β is monotone in some right neighborhood of 0. Then
limr→0 β(r) = s0. Also, the bound (3.3) then implies ess lim infr→0 r|β′(r)| = 0.
Therefore, we can find a sequence of regular radii {rj} such that β(rj) → s0 and
rjβ

′(rj) → 0. Since E is a closed set, we have (s0, s
2
0) ∈ E.

Case 2. The function β is not monotone in any neighborhood of 0. Then we
can find a sequence {sj} ⊂ G such that sj → s0 and for every j the set β−1(sj)
contains more than one point. Given such j, there exist r1, r2 ∈ β−1(sj) such that
β′(r1) ≤ 0 ≤ β′(r2). Since (sj , s

2
j + rlβ

′(rl)) ∈ E for l = 1, 2, the partial convexity
of E implies (sj , s

2
j ) ∈ E. Finally, (s0, s

2
0) ∈ E because E is closed.
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So far we have proved that (s0, s
2
0) ∈ E, which means

(3.11) F (q′(ϕ), q(ϕ), s0, s
2
0) ≤ 0, a.e. ϕ ∈ (a, b).

Observe that F (x, y, s, t) is a quadratic polynomial in x with a positive leading
coefficient. Hence for any y, s, t ∈ R the set {x ∈ R : F (x, y, s, t) ≤ 0} is a
subinterval of R. It is easy to check that for every y ∈ R

F (−y2 − s2
0, y, s0, s

2
0) = −k2

{
(2s0 − 2s2

0)
2 + 4(s0 − 1)2y2

}
< 0

and
F (0, y, s0, s

2
0) = (y2 + s2

0)((1− k2)(y2 + s2
0) + 4k2(s0 − 1)) > 0.

Therefore, {x ∈ R : F (x, y, s0, s
2
0) ≤ 0} ⊂ (−∞, 0). This and (3.11) imply the

conclusion of the lemma. ¤

The following computations lie at the core of our proof of Theorem 3.1.

Lemma 3.5. Let q and E be as above. If (s, t) ∈ E is such that s > 1 and t ≤ s2,
then s ≥ 1 + αK .

Proof. Solving the inequality F (q′, q, s, t) ≤ 0 for q′, we obtain

(3.12)
∣∣∣∣q′ + q2 +

(1 + k2)t− 2k2s

1− k2

∣∣∣∣ ≤
2k

1− k2

√
(t− s)2 + (1− k2)(s− 1)2q2.

Let

R(x, y, s, t) = x + y2 +
(1 + k2)t− 2k2s

1− k2

+
2k

1− k2

√
(t− s)2 + (1− k2)(s− 1)2y2;

inequality (3.12) implies that R(q′(ϕ), q(ϕ), s, t) ≥ 0 for a.e. ϕ ∈ (a, b). We claim
that R is an increasing function of t. To verify this, observe that for any fixed x, y
and s the function R has the form

t 7→ c1 + c2t + c3

√
(t− s)2 + c4,

where c2 > c3 > 0 and c4 ≥ 0. Differentiation yields
∂R

∂t
= c2 + c3

t− s√
(t− s)2 + c4

≥ c2 − c3 > 0,

as required.
The conditions p(a) = 0 = p(b) imply that for every c ∈ (a, b)

∫ c

a

q(ϕ)dϕ = +∞ and
∫ b

c

q(ϕ)dϕ = −∞.

Since q is strictly decreasing by Lemma 3.4, it follows that

(3.13) lim
ϕ→a

q(ϕ) = +∞ and lim
ϕ→b

q(ϕ) = −∞.

Since q(ϕ) is strictly decreasing, we can consider the inverse function ϕ(q)
which maps R onto the interval (a, b). By the above monotonicity of R we have
R(q′, q, s, s2) ≥ R(q′, q, s, t) ≥ 0. From the definition of R(q′, q, s, s2) it follows that
at a.e. point of R

(3.14)
dϕ

dq
≤ −

{
q2 +

2k(s− 1)
1− k2

√
(1− k2)q2 + s2 +

s2 − k2s(2− s)
1− k2

}−1

.
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Taking an antiderivative (with respect to q) of the right-hand side of (3.14), we
obtain

Φk,s(q) :=
1
2

tan−1

(
kq√

(1− k2)q2 + s2

)
− 1

2
tan−1

(q

s

)

− k1

√
1− k2

2k
√

1− k2
1

{
tan−1

(
q
√

1− k2

s
√

1− k2
1

)
+ tan−1

(
k1√

1− k2
1

q
√

1− k2

√
(1− k2)q2 + s2

)}
,

where

(3.15) k1 =
2− s

s
k < k < 1.

(It is straightforward, although a bit tiresome, to verify the antiderivative formula
by differentiating Φk,s in q.) Now we integrate (3.14) over R:

b− a = −
∫ ∞

−∞

dϕ

dq
dq ≥ Φk,s(−∞)− Φk,s(∞)

=
π

2
− tan−1

(
k√

1− k2

)
+

k1

√
1− k2

k
√

1− k2
1

{
π

2
+ tan−1

(
k1√

1− k2
1

)}
.

Since b− a ≤ π/2, it follows that

(3.16)
k√

1− k2
tan−1 k√

1− k2
≥ k1√

1− k2
1

(
π

2
+ tan−1 k1√

1− k2
1

)
.

Comparing (3.16) with (3.1) we conclude that k1 ≤ k0. This together with (3.2)
and (3.15) imply s ≥ 1 + αK . ¤

Proof of Theorem 3.1. We claim that β(r) ≥ 1 + αK for 0 < r < r0, where r0 is as
in (3.3). Suppose, to the contrary, that there exists ρ ∈ (0, r0) such that β(ρ) < 1+
αK . Recall that β is locally absolutely continuous on (0, r0) and that (β(r), β(r)2 +
rβ′(r)) ∈ E for every regular radius r ∈ (0, r0). By virtue of Lemma 3.5 we
have β′(r) > 0 whenever r ∈ (0, r0) is a regular radius such that β(r) < 1 + αK .
Therefore, β′(r) > 0 for every regular radius r ∈ (0, ρ). Since β is bounded from
below by (3.3), it follows that ess lim infr→0 rβ′(r) = 0. Let s0 = limr→0 β(r).
Since E is closed, we have (s0, s

2
0) ∈ E. Using Lemma 3.5 again, we conclude

that s0 ≥ 1 + αK . But β(ρ) > s0 because β is increasing on (0, ρ). This is a
contradiction.

Integrating the inequality β(r) ≥ 1 + αK with respect to r, we obtain g(r) =
O(r1+αK ), r → 0. Furthermore, (3.3) implies g′(r) = O(rαK ). By virtue of for-
mula (3.4) and Lemma 3.2 (i) the gradient mapping f is locally Hölder continuous
in C with exponent αK .

The sharpness of Theorem 3.1 is demonstrated in the next section. ¤

4. Sharpness of Theorem 3.1

Theorem 4.1. There exists a K-quasiregular gradient mapping f : C → C which
is homogeneous of degree αK , with αK as in (3.2).
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Proof. The construction of f uses some elements of the proof of Lemma 3.5, in
particular the function Φk,s. Let k and k0 be as in the definition of αK at the
beginning of section 3. Let s = 1 + αK and observe that

k1 =
2− s

s
k =

1− αK

1 + αK
k = k0.

Now define a function ϕ : R → (−π/4, π/4) by ϕ(q) = Φk,s(q). Using (3.1) we
obtain

lim
q→−∞

ϕ(q) = −1
2

tan−1 k√
1− k2

+
π

4
+

k0

√
1− k2

2k
√

1− k2
0

{
π

2
+ tan−1 k0√

1− k2
0

}

=
π

4
.

Also, limq→∞ ϕ(q) = −π/4 because ϕ(q) is an odd function. Since ϕ′(q) is the
right-hand side of (3.14), we have

(4.1) ϕ′(q) = −
{

q2 +
2k(s− 1)
1− k2

√
(1− k2)q2 + s2 +

s2 − k2s(2− s)
1− k2

}−1

< 0,

so there exists an inverse function q : (−π/4, π/4) → R. From (4.1) we obtain

(4.2) q′ + q2 +
s2 − k2s(2− s)

1− k2
= −2k(s− 1)

1− k2

√
(1− k2)q2 + s2.

Some algebra gives

(4.3) (q′ + q2 + s2)2 = k2
{
(q′ + q2 + s(2− s))2 + 4(s− 1)2q2

}
.

Now let

p(ϕ) = exp
(∫ ϕ

0

q(t)dt

)
, |ϕ| < π

4
.

Obviously p′/p = q; furthermore, p is an even function. In order to continu-
ously extend p to the real line R, we must first verify that limϕ→π/4 p(ϕ) = 0, i.e.∫ π/4

0
q(t)dt = −∞. Changing the variable of integration to q, we obtain from (4.1)
∫ π/4

0

q(t)dt =
∫ 0

−∞

qdq

q2 + 2k(s−1)
1−k2

√
(1− k2)q2 + s2 + s2−k2s(2−s)

1−k2

= −∞,

as required. Let p(±π/4) = 0. The extension of p to R by the antiperiodicity
relation p(ϕ+π/2) = −p(ϕ) is continuous. In fact, it is continuously differentiable,
which will follow once we prove that p′(ϕ) has a finite limit as ϕ ↑ π/4. When ϕ is
sufficiently close to π/4, we have q(ϕ) < −1, and so

log(−p′(ϕ)) = log p(ϕ) + log(−q(ϕ)) =
∫ ϕ

0

q(t)dt−
∫ −1

q(ϕ)

dt

t

=
∫ 0

q(ϕ)

{
q

q2 + 2k(s−1)
1−k2

√
(1− k2)q2 + s2 + s2−k2s(2−s)

1−k2

− χ{q<−1}
q

}
dq.

The last integral converges as ϕ ↑ π/4 because the integrand is O(q−2) as q → −∞.
Thus p′ is continuous at ±π/4.

Later we will see that p′′ is not defined at the points π/4+πn/2, n ∈ Z. However,
it is continuous and uniformly bounded outside of those points. To prove this it
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is sufficient to consider p on the interval (−π/4, π/4). Multiplying (4.2) by p and
using the identity p′′ = p(q′ + q2), we obtain

(4.4) p′′(ϕ) = −2k(s− 1)
1− k2

√
(1− k2)p′(ϕ)2 + s2p(ϕ)2 − s2 − k2s(2− s)

1− k2
p(ϕ)

for all ϕ ∈ (−π/4, π/4). Since p and p′ are uniformly bounded, so is p′′. In
particular, it follows that p′ is absolutely continuous and p′′ is its distributional
derivative.

Another consequence of (4.4) is that p is concave on (−π/4, π/4). This in turn
implies that p′ does not vanish at ±π/4. Using (4.4) again, we see that

lim
|ϕ|↑π/4

p′′(ϕ) = −2k(s− 1)√
1− k2

|p′(π/4)| < 0.

Since p was extended antiperiodically, it follows that p′′ indeed has a jump discon-
tinuity at the points π/4 + πn/2, n ∈ Z.

Finally, we consider the function u(reiϕ) = rsp(ϕ). By the results of the preced-
ing paragraph, the second-order partial derivatives of u are essentially bounded in
any annulus {reiϕ : 0 < r1 ≤ r ≤ r2 < ∞}. Since they are also homogeneous of
degree s − 2 > −1, we conclude that u ∈ W 2,2

loc (C). Now the mapping f = ∂u/∂z

is in W 1,2
loc (C;C). Furthermore, p satisfies (3.10) with equality and with β = s and

ζ = s2. To see this, use (4.3) and the identity p(q′ + q2) = p′′. The equivalence
of (3.10) and (1.4) shows that f is a K-quasiregular mapping. This completes our
construction. ¤

Remark 4.2. The value of αK given by (3.2) is strictly smaller than α
(1)
K defined

by (1.7). This can be verified by direct computations. Alternatively, consider the
K-quasiregular gradient mapping

(4.5) f(z) = |z|α
(

z

|z| −
1− α

3 + α

|z|3
z3

)
, α = α

(1)
K ,

introduced in [28]. According to [28], f(z) = ∂u/∂z, where

(4.6) u(z) =
4

α + 3
|z|α−1 Re(z2).

Applying Theorem 3.1 to u, we obtain α
(1)
K ≥ αK . The possibility that α

(1)
K = αK

can be excluded by carrying out the computations in the proof of Theorem 3.1 with
u given by (4.6).

A common way of constructing counterexamples in the theory of PDE is to first
define a C∞ function on the unit sphere and then extend it to the unit ball so that
the extension is smooth everywhere except at the origin (e.g. [21, 33, 40, 46, 48]).
In contrast to this, the function u(reiϕ) = rsp(ϕ) provided by Theorem 4.1 is not
even C2 away from the origin. More precisely, u(reiϕ) is C∞ in each of the four
sectors

{reiϕ : r > 0, |ϕ− πn/2| < π/4}, n = 0, . . . , 3.

In each of these sectors either P+(D2u) = 0 or P−(D2u) = 0, where P+ and P−
are Pucci’s extremal operators [12, 41]. On the boundary of each sector u vanishes
and its second derivative in ϕ has a jump discontinuity, according to the proof of
Theorem 4.1.
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We can compute the complex dilatation µ of f = ∂u/∂z as in (3.9).

µ(ϕ) =
∂f/∂z̄

∂f/∂z
(reiϕ) = −e2iϕ p′′(ϕ) + s2p(ϕ)

p′′(ϕ) + s(2− s)p(ϕ) + 2i(s− 1)p′(ϕ)
.

Following [41] and [32], define the matrix-valued function

B(reiϕ) =
(

1− Re µ(ϕ) Im µ(ϕ)
Im µ(ϕ) 1 + Re µ(ϕ)

)
, r > 0, ϕ ∈ R.

According to [32, 41], u is a strong solution of the equation

Tr(B(z)D2u(z)) = 0, a.e. z ∈ C.

Like the Gilbarg-Serrin operators mentioned in §1, Tr(B(z)D2) has coefficients
independent of r. Unlike the Gilbarg-Serrin operators, it has coefficients with a large
set of discontinuity, namely {z ∈ C : Re(z2) = 0}. We hope that our construction
of the “extremal” operator Tr(B(z)D2) and the structure of its discontinuity set
can provide some ideas for the treatment of higher-dimensional equations in non-
divergence form.

5. Self-similar mappings

Self-similar mappings, defined by (5.1) below, provide a natural generalization
of homogeneous mappings. It is therefore of interest to extend Theorem 3.1 to
this class of quasiregular gradient mappings. Although we have been unable to do
this, we can derive an asymptotically sharp estimate for the order of vanishing of
self-similar mappings. The proof of this estimate is quite different from what we
did in the two preceding sections.

Theorem 5.1. Let f be a K-quasiregular gradient mapping, K > 1, and suppose
that there is Λ > 1 and α ∈ (0, 1) such that

(5.1) f(Λz) = Λαf(z), z ∈ C.

Then α ≥ α
(3)
K , where α

(3)
K ∈ (0, 1) is determined from the equation

(1− α)(3 + α)√
9 + 22α2 + α4

=
K − 1
K + 1

.

Remark 5.2. Note that α
(3)
K ≈ 3/K ≈ αK for large K, where αK is defined

by (3.2). Since homogeneous mappings are self-similar, Theorem 4.1 shows that
Theorem (5.1) is asymptotically sharp.

Proof. Since r−αf(reiϕ) is a doubly-periodic function of log r and ϕ, it can be
expanded into a double Fourier series

(5.2) f(reiϕ) =
∑

m,n∈Z
cmnrα+imγeinϕ,

where γ = 2π/ log Λ. Since the first-order derivatives of f are square integrable,
we can differentiate (5.2) to obtain Fourier expansions for ∂f/∂z and ∂f/∂z that
converge in the L2 sense. Specifically,

∂f

∂z
=

1
2

∑

m,n∈Z
(α + n + imγ)cmnrα−1+imγei(n−1)ϕ;

∂f

∂z̄
=

1
2

∑

m,n∈Z
(α− n + imγ)cmnrα−1+imγei(n+1)ϕ.
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Now inequality (1.4) and Parseval’s formula imply

(5.3)
∑

m,n∈Z

{
(α− n)2 + (mγ)2

} |cmn|2 ≤ k2
∑

m,n∈Z

{
(α + n)2 + (mγ)2

} |cmn|2.

Recall that ∂f/∂z̄ is real-valued, which is equivalent to

(5.4) (α− n + imγ)cmn = (α + n + 2 + imγ)c̄−m,−n−2, m, n ∈ Z.

Combining (5.3) and (5.4), we obtain
∑

m∈Z

{
(α + 1)2 + (mγ)2

} |cm,−1|2 + 2
∑

m∈Z
n≥0

{
(α− n)2 + (mγ)2

} |cmn|2

≤ k2
∑

m∈Z

{
(α− 1)2 + (mγ)2

} |cm,−1|2

+ k2
∑

m∈Z
n≥0

{
(α + n)2 + (mγ)2 +

(n + 2− α)2 + (mγ)2

(n + 2 + α)2 + (mγ)2
[(α− n)2 + (mγ)2]

}
|cmn|2.

Let m,n ∈ Z be such that the multiplier of |cmn|2 on the left-hand side of the last
inequality is majorized by its counterpart on the right-hand side. It is easy to see
that n 6= 0,−1. Therefore,

2
k2

{
(n− α)2 + (mγ)2

} ≤ (n+α)2+(mγ)2+
(n + 2− α)2 + (mγ)2

(n + 2 + α)2 + (mγ)2
[(n−α)2+(mγ)2]

for some n ≥ 1 and m ∈ Z. Let ξ = (mγ)2. Then

(5.5)
2
k2
≤ (n + α)2 + ξ

(n− α)2 + ξ
+

(n + 2− α)2 + ξ

(n + 2 + α)2 + ξ
=: F (n, ξ).

We claim that sup{F (t, ξ) : t ≥ 1, ξ ≥ 0} = F (1, 0).
It is easy to prove [28] that sup{F (t, 0) : t ≥ 1} = F (1, 0) > 2. Fix t ≥ 1 and

consider the function ξ 7→ F (t, ξ), ξ ≥ 0. Since limξ→∞ F (t, ξ) = 2, the claim will
follow once we prove that there are no local maxima for ξ ∈ (0,∞). The partial
derivative

∂F

∂ξ
=

4α(t + 2)
((t + 2 + α)2 + ξ)2

− 4αt

((t− α)2 + ξ)2

vanishes when
(t + 2 + α)2 + ξ = ((t− α)2 + ξ)

√
1 + 2/t,

that is, for at most one value of ξ. Since

lim
ξ→∞

ξ2 ∂F

∂ξ
= 8α > 0,

it follows that the function ξ 7→ F (t, ξ) does not have a local maximum at any point
ξ ∈ (0,∞). Thus

sup{F (t, 0) : t ≥ 1, ξ ≥ 0} = F (1, 0) = 2
9 + 22α2 + α4

(1− α)2(3 + α)2
,

which by (5.5) implies

k ≥ (1− α)(3 + α)√
9 + 22α2 + α4

.

Since the right-hand side is decreasing in α [28], the theorem follows. ¤
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Remark 5.3. The self-similarity assumption (5.1) can be weakened to allow “simi-
larity with rotation”. More precisely, it can be replaced with f(Λz) = Λα+iα̃f(z)
for some Λ > 1, α ∈ (0, 1) and α̃ ∈ R. The above argument then applies with mγ
replaced by mγ + α̃.

Theorem 5.1 provides additional evidence that the optimal Hölder exponent for
general strong solutions of (1.1) is equal to the exponent αK in Theorem 3.1.

6. Concluding remarks

In this paper we considered only Hölder regularity of solutions. One can also ask
about the sharp degree of regularity on the scale of Sobolev spaces. A celebrated
theorem of Astala [2] says that every K-quasiregular mapping in the plane is locally
in W 1,p for every p < pK := 2K/(K−1), but does not necessarily belong to W 1,pK

loc .
Consequently, every strong solution of (1.1) is locally in W 2,p for every p < pK .
Astala, Faraco and Székelyhidi [3] used convex integration to construct strong solu-
tions of (1.1) that do not belong to W 2,pK

loc . This means that quasiregular gradient
mappings do not possess any higher Sobolev regularity than general quasiregular
mappings.

By the Morrey embedding theorem, W 1,p ⊂ C0,α with α = 1 − 2/p provided
that p > 2. Let us say that exponents p and α are coupled if α = 1 − 2/p.
For the divergence form equations in the plane the optimal values of p and α are
p = 2

√
K/(

√
K − 1) (not attained) and α = 1/

√
K (attained), see [2, 3, 30, 40].

These values are coupled in the above sense. By contrast, Theorem 1.1 together
with the results in [3] show that the optimal Hölder and Sobolev exponents for the
non-divergence form equations are not coupled.
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[40] L. C. Piccinini – S. Spagnolo, On the Hölder continuity of solutions of second order elliptic
equations in two variables, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 391–402.



ELLIPTIC EQUATIONS IN THE PLANE 19

[41] C. Pucci, Un problema variazionale per i coefficienti di equazioni differenziali di tipo ellittico,
Ann. Scuola Norm. Sup. Pisa (3) 16 (1962), 159–172.

[42] C. Pucci, Limitazioni per soluzioni di equazioni ellittiche, Ann. Mat. Pura Appl. (4) 74
(1966), 15–30.

[43] Yu. G. Reshetnyak, “Space mappings with bounded distortion”, Translations of Mathemat-
ical Monographs, vol. 73. AMS, Providence, 1989.
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