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Hyperbolic and quasisymmetric structure of hyperspaces

Leonid V. Kovalev and Jeremy T. Tyson

Abstract. A hyperspace is a space of nonempty closed sets equipped with
the Hausdorff metric. Among the subjects considered in this paper are Gro-
mov hyperbolicity, quasisymmetric equivalence and bi-Lipschitz embeddings
of hyperspaces.

1. Introduction

Let (X, d) be a metric space. We denote by CL(X) the hyperspace of nonempty
closed subsets of a metric space X , equipped with the Hausdorff distance

D(A, B) = inf{ǫ > 0 : A ⊂ Nǫ(B) and B ⊂ Nǫ(A)},
where Nǫ(A) = {x ∈ X : dist(x, A) ≤ ǫ} is the closed ǫ-neighborhood of A ⊂ X .
If there is no such ǫ, the distance between A and B is infinite. Notice that if
D(A, B) < ∞, then the above infimum is attained. The distance D is a metric on
CL(X) if and only if X is bounded. For unbounded X the set CL(X) naturally
splits into an infinite collection of disjoint metric spaces. The most notable of
these is H(X), the space of nonempty bounded closed subsets of X . However, we
are also interested in other components of CL(X). Each of them has the form
H(X ; C) := {A ∈ CL(X) : D(A, C) < ∞} for some C ∈ CL(X). Note that
H(X ; C) = H(X) if and only if C is bounded. Also, let Hc(X ; C) = {A ∈ H(X ; C) :
A is geodesically convex} denote the hyperspace of closed convex sets at a finite
distance from C. When C is bounded, we write Hc(X) for Hc(X ; C). An open ball
with center x and radius r will be denoted by B(x, r).

Most of the existing research on hyperspaces equipped with the Hausdorff dis-
tance is focused on H(X) and its subsets such as Hc(X). However, the spaces
H(X ; C) with C unbounded do arise naturally. As an example, consider a Lips-
chitz quotient mapping f : X → Y , where X and Y are metric spaces. Recall that
f is called a Lipschitz quotient [4] if there exist two constants 0 < l ≤ L < ∞ such
that

B(f(x), lr) ⊂ f(B(x, r)) ⊂ B(f(x), Lr), x ∈ X, r > 0.

A Lipschitz quotient f : X → Y induces a map Gf : CL(Y ) → CL(X) such that
Gf (A) = f−1(A). It is easy to check that Gf is bi-Lipschitz on each component
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of CL(Y ). However, in many interesting cases Gf does not map H(Y ) into H(X);
instead Gf (H(Y )) is contained in H(X ; C) for some unbounded set C. Even the
simplest elements of H(Y ), namely singletons {y}, can be mapped by Gf into sets
with rather complicated structure [12, 28]. It remains an open question whether
Gf ({y}) is always a discrete set when X = Y = R

n, n > 2. See [4, 20, 23] for
more on this problem.

The spaces H(X ; C) with C unbounded are typically larger and more complex
than H(X). For instance, H(X) is separable whenever X is proper (i.e. such that all
of its closed bounded subsets are compact). By contrast, H(X ; C) is non-separable
if X is connected and C is unbounded (Theorem 5.1). Furthermore, large classes
of metric spaces admit isometric or bi-Lipschitz embeddings into H(X ; C).

Section 2 is concerned with hyperspaces of special classes of metric spaces:
length spaces, Gromov hyperbolic space, and nonpositively curved spaces (in the
sense of Busemann or Cartan–Alexandrov–Toponogov). We attempt to determine
the extent to which such properties of X are inherited by H(X) or other compo-
nents of CL(X). Several results in section 2 are extensions to the case of general
hyperspaces H(X ; C) of known results for the standard hyperspace H(X) from
[11] and [13]. Sections 3 and 4 are focused on mappings between hyperspaces. The
following class of mappings is central in modern geometric function theory [16].

Definition 1.1. Let X and Y be metric spaces. An injective mapping f :
X → Y is called quasisymmetric, or η-quasisymmetric, if there is a homeomorphism
η : [0,∞) → [0,∞) such that

dY (f(x1), f(x3))

dY (f(x2), f(x3))
≤ η

(

dX(x1, x3)

dX(x2, x3)

)

for any distinct points x1, x2, x3 ∈ X .

In general, a quasisymmetric mapping f : X → Y does not lift to a quasisym-
metric mapping of H(X). We call f hyperquasisymmetric if it does. Theorem 3.4
provides two characterizations of such maps, which arise naturally in the context
of Gromov hyperbolicity and bi-Lipschitz homogeneity. In §4 we consider a no-
tion of dimension of metric spaces which is invariant under hyperquasisymmetric
mappings.

2. Geodesics in hyperspaces

Throughout the paper all rectifiable curves are assumed to be parametrized
proportional to the arclength, unless stated otherwise. A metric space (X, d) is
called a length space if for any x, y ∈ X and any ǫ > 0 there is a curve γ : [0, 1] → X
such that γ(0) = x, γ(1) = y and the length of γ is at most d(x, y) + ǫ. If such γ
exists even for ǫ = 0, then X is called a geodesic space. Every proper length space
is geodesic [15, 29].

The hyperspace H(X) of a geodesic space X need not be geodesic itself, as is
demonstrated by the following example from [10]. Let X be the Banach space c0,
namely, the space of all real-valued sequences converging to 0. Let

A = {x ∈ c0 : xn = 1 + 1/n for an odd number of n’s, and xn = 0 otherwise};
B = {x ∈ c0 : xn = 1 + 1/n for an even number of n’s, and xn = 0 otherwise}.

One can see that A, B ∈ H(X) and D(A, B) = 1, but N1/2(A) ∩ N1/2(B) =
∅, hence there is no geodesic connecting A to B. If X is assumed to be both
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geodesic and compact, then H(X) is geodesic as well [10], however, the assumption
of compactness is somewhat restrictive.

Theorem 2.1. Let X = (X, d) be a length space. Then H(X ; C) is a length
space for all C ∈ CL(X).

Proof. Choose a number σ > 1. For each x, y ∈ X , let γxy : [0, 1] → X
be a curve of length at most σd(x, y) such that γxy(0) = x and γxy(1) = y. By
our convention, γxy is parametrized proportional to its arclength, which implies
d(γxy(s), γxy(t)) ≤ σ|s − t|d(x, y) for all 0 ≤ s < t ≤ 1.

Let A, B ∈ H(X ; C) and let E = {(a, b) ∈ A × B : d(a, b) ≤ σD(A, B)}. By
the definition of the Hausdorff metric,

(2.1) πA(E) = A and πB(E) = B,

where πA, πB are the coordinate projections on A × B.
Define a function ΓAB from [0, 1] to the power set of X as follows:

ΓAB(t) = {γab(t) : (a, b) ∈ E}.

Then ΓAB(t) is closed, and contained in the closed σ2D(A, B)-neighborhood of A.
Thus ΓAB : [0, 1] → H(X ; C). By (2.1), ΓAB(0) = A and ΓAB(1) = B. We claim
that ΓAB is a rectifiable curve of length at most σ2D(A, B), although it need not
be parametrized proportional to the arclength. Let s and t be given, 0 ≤ s < t ≤ 1.
For each (a, b) ∈ E

d(γab(s), γab(t)) ≤ σ|s − t|d(a, b) ≤ σ2|s − t|D(A, B),

which implies

(2.2) D(ΓAB(s), ΓAB(t)) ≤ σ2|s − t|D(A, B).

Thus the length of ΓAB does not exceed σ2D(A, B). Since σ > 1 is arbitrary,
H(X ; C) is a length space. �

Corollary 2.2. Let X be a proper geodesic space. Then H(X ; C) is a geodesic
space for all C ∈ CL(X).

Proof. Since X is proper, for any a ∈ X and any B ∈ CL(X) there exists
b ∈ B such that d(a, b) = dist(a, B). This and the fact that X is a geodesic space
allow us to carry out the proof of Theorem 2.1 with σ = 1. Then (2.2) takes the
form

D(ΓAB(s), ΓAB(t)) ≤ |s − t|D(A, B).

Since ΓAB(0) = A and ΓAB(1) = B,

D(A, B) ≤ D(ΓAB(0), ΓAB(s)) + D(ΓAB(s), ΓAB(t)) + D(ΓAB(t), ΓAB(1))

≤ (s + |s − t| + 1 − t)D(A, B)

= D(A, B).

Thus equality holds throughout, and we conclude that

D(ΓAB(s), ΓAB(t)) = |s − t|D(A, B)

for all A, B ∈ H(X ; C) and all 0 ≤ s < t ≤ 1. �



4 LEONID V. KOVALEV AND JEREMY T. TYSON

Remark 2.3. Geodesics in H(X ; C) are not unique if X is a geodesic space
containing more than one point. Consider H([0, 1]) as an example. The sets A =
{0} and B = [0, 1] are at distance 1 from each other. The following two curves are
geodesics connecting A to B:

Γ1(t) = [0, t], 0 ≤ t ≤ 1;

Γ2(t) =

{

{t}, 0 ≤ t ≤ 1/2;

[1 − t, t], 1/2 ≤ t ≤ 1.

If X is a geodesic space containing more than one point, then H(X ; C) contains
a rescaled copy of H([0, 1]) (see the proof of Proposition 2.5) and therefore has
non-unique geodesics.

Remark 2.4. In spite of Remark 2.3, it sometimes happens that two sets
A, B ∈ H(X ; C) can be connected by only one geodesic. Indeed, if Γ : [0, 1] →
H(X ; C) is any geodesic between A and B, then for every t ∈ [0, 1] the inequalities
D(Γ(t), A) ≤ tD and D(Γ(t), B) ≤ (1 − t)D imply

Γ(t) ⊂ NtD(A) ∩ N(1−t)D(B),

where D = D(A, B). If any proper subset E of NtD(A)∩N(1−t)D(B) satisfies either
D(E, A) > tD or D(E, B) > (1− t)D, then Γ is a unique geodesic connecting A to
B. An example of this kind is given after Proposition 2.5.

It is interesting to determine which properties of metric spaces are inherited
by their hyperspaces. The following proposition provides a negative result of this
kind. A geodesic metric space X is Gromov hyperbolic if each side of a geodesic
triangle is contained in the δ-neighborhood of the union of the other two sides. See,
e.g., [9, Chapter III.H].

Proposition 2.5. Let X be a proper geodesic space. The hyperspace H(X ; C)
is Gromov hyperbolic if and only if X is bounded.

Proof. If X is bounded, then so is H(X ; C), and bounded spaces are trivially
Gromov hyperbolic.

Suppose that X is unbounded. Pick two points a, b ∈ X at distance L from
each other. Let C′ = C \B(a, 3L) and let γab : [0, 1] → X be a geodesic connecting
a to b. The Hausdorff distance between any two of the sets C′ ∪ {a}, C′ ∪ {b} and
G = C′ ∪ γab([0, 1]) is equal to L. For 0 ≤ t ≤ 1 let Γ{a}{b}(t) = C′ ∪ {γab(t)},
Γ{a}G(t) = C′ ∪ γab([0, L]), and ΓG{b}(t) = C′ ∪ γab([L, 1]). These are geodesics
in H(X ; C). For every t the sets Γ{a}G(t) and ΓG{b}(t) contain at least one of
the points a and b. It follows that the distance in H(X ; C) from Γ{a}{b}(1/2)
to Γ{a}G([0, 1]) ∪ ΓG{b}([0, 1]) is equal to L/2. Since L can be arbitrarily large,
H(X ; C) is not Gromov hyperbolic. �

Despite Proposition 2.5, one can sometimes find large (unbounded) subsets of
H(X) that are Gromov hyperbolic. To this end, we introduce uniformly bounded
hyperspaces

HL(X) = {A ∈ H(X) : diamA ≤ L}.
Unfortunately, the analogue of Corollary 2.2 is false for HL(X). Indeed, let S(R) =
{x ∈ R

n : |x| = R} be a sphere equipped with the intrinsic metric. Choose
h ∈ (0, R) and let A = {x ∈ S(R) : xn = h}, B = {x ∈ S(R) : xn = −h}.
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Clearly D(A, B) = 2R sin−1(h/R). Using Remark 2.4 we find that there is only
one geodesic connecting A to B in H(X), namely

ΓAB(t) = {x ∈ S(R) : xn = R sin(sin−1(h/R)(1 − 2t))}.
Since diamΓAB(1/2) = πR, it follows that HL(S(R)) is not geodesic for any L <
πR.

The preceding example is bounded, hence trivially Gromov hyperbolic, but
fails an additional test of nonpositive curvature. A geodesic metric space X is
nonpositively Busemann curved if for any two geodesics γ : [a, b] → X and γ′ :
[a′, b′] → X , the map (t, t′) 7→ d(γ(t), γ′(t)) from [a, b] × [a′, b′] to [0,∞) is convex.
See, e.g., [27, Chapter 8] or [13].

Proposition 2.6. If X is a proper nonpositively Busemann curved space, then
HL(X) is a geodesic space for all L ≥ 0.

Proof. Given A, B ∈ HL(X), let ΓAB be as in the proof of Theorem 2.1 (with
σ = 1). Let γ = γab and γ′ = γa′b′ , where a, a′ ∈ A and b, b′ ∈ B. The convexity
of the distance function in nonpositively curved Busemann spaces (see, e.g., [27,
Proposition 8.1.2]) yields

d(γ(t), γ′(t)) ≤ (1 − t)d(γ(0), γ′(0)) + td(γ(1), γ′(1)) ≤ (1 − t)L + tL = L.

Thus diamΓAB(t) ≤ L as required. �

Examples of nonpositively curved Busemann spaces include CAT(0) spaces [9,
p. 176] and strictly convex normed vector spaces [27, Proposition 8.1.6].

Under the assumptions of Proposition 2.6 the space HL(X) does not have to
be a nonpositively curved Busemann space itself. This follows from Remark 2.3
and the uniqueness of geodesics in such spaces [27, Proposition 8.1.4].

Proposition 2.7. Let X be a proper nonpositively curved Busemann space.
If X is δ-hyperbolic, then HL(X) is δ′-hyperbolic, where δ′ depends on δ and L.
Furthermore, the Gromov boundaries of X and HL(X), equipped with visual metrics
with common visual parameter, are bi-Lipschitz equivalent.

We refer to [9, Chapter III.H] for the definition and basic properties of the
Gromov boundary and visual metrics thereon.

Proof. Let s : HL(X) → X be a mapping such that s(A) ∈ A for every
A ∈ HL(X) (the existence of such s follows from the Axiom of Choice). Let A and
B be two sets in HL(X), and let D = D(A, B), d = d(s(A), s(B)). Since s(A) ∈
ND(B) ⊂ ND+L({s(B)}), we have d ≤ D + L. Conversely, A ⊂ NL({s(A)}) ⊂
Nd+L(B) and B ⊂ Nd+L(A), which means that d ≥ D − L. Thus the mapping s
is a (1, L)-quasi-isometry. Since HL(X) admits a quasi-isometric embedding into
a δ-hyperbolic space, it is δ′-hyperbolic with δ′ = δ′(L, δ) [9, p. 402]. By a simple
modification of the argument in the proof of Theorem 6.5 (1) of [7], the mapping s
induces a bi-Lipschitz mapping ∂s : ∂HL(X) → ∂X . Finally, since s is surjective,
so is ∂s (Proposition 6.3 (4) of [7]). �

We now turn to the hyperspaces of convex sets: Hc(X) and Hc(X ; C). Corol-
lary 2.2 fails for Hc(X), which can be seen as follows. As before, let S(R) = {x ∈
R

n : |x| = R} be a sphere equipped with the intrinsic metric. Choose h ∈ (0, R)
and let A = {x ∈ S(R) : xn ≥ h}, B = {x ∈ S(R) : xn = −R}. Clearly
A, B ∈ Hc(S(R)) and D(A, B) = πR. Suppose that γ : [0, 1] → Hc(S(R)) is
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a geodesic segment joining A to B. Choose three points a, b, c ∈ A so that the
geodesic triangle △(a, b, c) in S(R) with vertices a, b and c contains the point
p = (0, 0, . . . , R) in its interior. For all sufficiently small t > 0 the set γ(t)
must contain points a′, b′ and c′ such that the interior of the geodesic triangle
△(a′, b′, c′) also contains p. Since At is geodesically convex, we have P ∈ At, hence
D(At, B) = πR = D(A, B). This is a contradiction.

Once again, nonpositive curvature bounds save the day. When X is nonposi-
tively curved in the sense of Busemann, geodesics in X are unique, which allows us
to define the convexification map conv : H(X ; C) → CL(X) as follows: conv(A) is
the intersection of all geodesically convex closed sets containing A. To prove that
the hyperspaces of convex subsets of nonpositively curved Busemann spaces are
geodesic, we require the following lemma.

Lemma 2.8. If X is a proper nonpositively curved Busemann space, then the
convexification map is a contraction from H(X ; C) into Hc(X ; conv(C)).

The version of Lemma 2.8 for H(X) was proved in [11] (Lemma 3.1). Our
proof is essentially the same and is given here for the reader’s convenience.

Proof. Given A ∈ H(X ; C), one can write conv(A) as the closure of an in-
creasing union of sets Am, where A0 = A and Am+1 is the union of all geodesics
joining points of Am. To prove that conv is a contraction, it suffices to show
D(Am+1, Bm+1) ≤ D(Am, Bm) for all m, or equivalently, just for m = 0. For every
a ∈ A1 there exist a geodesic segment γ : [0, 1] → X such that γ(0), γ(1) ∈ A and
γ(t) = a for some t. Choose another geodesic γ′ : [0, 1] → X so that γ′(0), γ′(1) ∈ B,
d(γ(0), γ′(0)) ≤ D(A, B), and d(γ(1), γ′(1)) ≤ D(A, B). Using the convexity of the
distance function, we obtain

d(a, γ′(t)) ≤ td(γ(0), γ′(0)) + (1 − t)d(γ(1), γ′(1)) ≤ D(A, B).

Since γ′(t) ∈ B1, it follows that A1 ⊂ ND(A,B)(B1). Interchanging the roles of A

and B, we obtain D(A1, B1) ≤ D(A, B), as required. �

When conv(C) /∈ H(X ; C), the convexification map is no longer a retraction of
H(X ; C). Moreover, conv : H(X ; C) → Hc(X ; conv(C)) need not be a surjection.
Indeed, let X = R

2 and C = {(n2, 0) : n = 1, 2, . . . }. Given A ∈ H(X ; C), let A′ be
the projection of A onto the x-axis. Let d = D(A′, C); clearly d ≤ D(A, C) < ∞.
Fix an integer n ≥ d. The definition of d implies

A′ ∩ [n2 − d, n2 + d] 6= ∅;

A′ ∩ (n2 + d, (n + 1)2 − d) = ∅;

A′ ∩ [(n + 1)2 − d, (n + 1)2 + d] 6= ∅.

In other words, the vertical strip S = {(x, y) : n2 + d < x < (n + 1)2 − d}
separates A. It follows that conv(A) ∩ S is a (possibly degenerate) quadrangle.
In particular, conv(A) is not strictly convex. On the other hand, Hc(X ; conv(C))
contains some strictly convex sets, e.g., {(x, y) : x ≥ 0, |y| ≤ tan−1 x}. Therefore,
conv(H(X ; C)) 6= Hc(X ; conv(C)).

Corollary 2.9. If X is a proper nonpositively curved Busemann space, then
Hc(X ; C) is a geodesic space for all convex sets C ∈ CL(X).
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Proof. By virtue of Corollary 2.2 and Lemma 2.8 the proof reduces to the
following simple observation. If γ is a geodesic in a metric space Y , and T : Y → Y
is a contraction that fixes the endpoints of γ, then T ◦ γ is a geodesic in T (Y ). �

If C is bounded, Corollary 2.9 reduces to Proposition 3.5 in [11].

3. Mappings of hyperspaces

Every continuous mapping f : X → Y induces a mapping Gf : CL(Y ) →
CL(X) as follows: Gf (A) = f−1(A). In general Gf is not continuous, and can
even map two sets at finite distance from each other into sets at infinite distance.
Indeed, let X = {(x, y) ∈ R

2 : x > 0} ∪ {(x, 0) ∈ R
2 : x ≤ 0}, Y = R, and define

f : X → Y by f(x, y) = x. Obviously D(Gf ({0}), Gf ({1})) = ∞. Observe that
f is an open mapping, i.e. for any x ∈ X and r > 0 there is ρ > 0 such that
B(f(x), ρ) ⊂ f(B(x, r)). However, ρ cannot be chosen independently of r. This
leads us to the following definition, which appeared, e.g. in [20].

Definition 3.1. A mapping f : X → Y between two metric spaces X, Y is
called co-uniformly continuous if there exists an increasing function ω̃f : (0,∞) →
(0,∞) such that B(f(x), ω̃f (r)) ⊂ f(B(x, r)) for all x ∈ X and all r > 0.

If f : X → Y is co-uniformly continuous, then Gf is uniformly continuous.
Indeed, given two sets A, B ∈ CL(Y ) such that D(A, B) ≤ ω̃f (r), we easily obtain
f−1(A) ⊂ Nr(f

−1(B)) and f−1(B) ⊂ Nr(f
−1(A)). Similarly, if f is a Lipschitz

quotient (defined in the introduction), then Gf is bi-Lipschitz (cf. Lemma 6.1 [25]).
Every uniformly continuous homeomorphism f : X → Y between metric spaces

lifts to a continuous mapping Ff : H(X) → H(Y ) of the corresponding hyperspaces:

Ff (A) = {f(a) : a ∈ A}.
If f is bi-Lipschitz, then Ff is also bi-Lipschitz. In other words, the class of bi-
Lipschitz mappings is invariant under the hyperspace functor. The same is true
for isometries, and moreover, for many spaces X every isometry of H(X) coincides
with Ff where f is an isometry of X [3, 13]. The following result shows that
quasisymmetric mappings are not preserved by the hyperspace functor. Before
stating it, let us introduce the pointwise Lipschitz constant of f at x ∈ X by

Lf(x) := lim sup
y→x

d(f(x), f(y))

d(x, y)
.

We say that a map f : X → Y is hyperquasisymmetric if Ff is quasisymmetric.
Considering the action of Ff on singletons, we see that such f must be quasisym-
metric itself.

Proposition 3.2. Let f : X → Y be a homeomorphism of connected metric
spaces which is Lipschitz on a neighborhood of one point in X, and whose pointwise
Lipschitz constant is infinite at another point in X. Then f is not hyperquasisym-
metric.

For example, the map f : [0, 1] → [0, 1], f(t) =
√

t, is quasisymmetric, but not
hyperquasisymmetric.

Proof. We use primes to denote images under f and Ff , i.e., u′ = f(u),
A′ = Ff (A), etc. Let U be a neighborhood of a point p ∈ X such that f |U is
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L-Lipschitz, and let q ∈ X \ U satisfy Lf(q) = +∞. We may assume without loss
of generality that U = B(p, ǫ) for some

0 < ǫ < min

{

1

3
d(p, q),

1

2L + 1
d(p′, q′)

}

.

Choose points vn → q so that d(v′n, q′) > nd(vn, q). By restricting our attention to
sufficiently large n, we may assume that

max{d(vn, q), d(v′n, q′)} ≤ ǫ.

Then

min{d(vn, p), d(v′n, p′)} ≥ ǫ

for all n.
Since X is connected, we may choose points un ∈ U so that δn := d(p, un) =

d(q, vn) for all n. Let An = {p, vn}, Bn = {p, un, vn}, and Cn = {p, vn, q}. Then
D(An, Bn) = D(An, Cn) = δn. On the other hand,

D(A′
n, B′

n) = min{d(p′, u′
n), d(u′

n, v′n)} ≤ Lδn

while

D(A′
n, C′

n) = min{d(p′, q′), d(v′n, q′)} > nδn.

Thus Ff is not quasisymmetric. �

The main theorem of this section provides two characterizations of the class
of hyperquasisymmetric maps and incidentally shows that this class is invariant
under the hyperspace functor. In other words, hyperquasisymmetric maps lift to
quasisymmetric maps on iterated hyperspaces such as H(H(X)). See [2, 31, 34]
for more on iterated hyperspaces. Some preliminaries are required to state the
theorem. Given a metric space X , let Dist(X) be its distance set:

Dist(X) = {dX(x1, x2) : x1, x2 ∈ X} ⊂ [0,∞).

The modulus of continuity of a mapping f : X → Y is defined as

ωf (δ) = sup{dY (f(x1), f(x2)) : dX(x1, x2) ≤ δ}, δ > 0.

We say that ωf is controlled by a homeomorphism η : [0,∞) → [0,∞) provided
that ωf (δ) < ∞ for all δ > 0 and

ωf(tδ) ≤ η(t)ωf (δ), δ ∈ Dist(X), t > 0.

Whether or not ωf is controlled by η may depend on X as well as on ωf and η.

Lemma 3.3. Let C ∈ CL(X). For any δ ∈ Dist(H(X ; C)) there exists a non-
decreasing sequence {δn} ⊂ Dist(X) such that δn → δ.

Proof. Choose A, B ∈ H(X ; C) so that D(A, B) = δ. Without loss of gener-
ality we may assume that for any ǫ > 0 there is a ∈ A such that dist(a, B) ≥ δ − ǫ.
Then there is b ∈ B such that δ − ǫ ≤ dX(a, b) ≤ δ. Since ǫ > 0 is arbitrary, the
claim follows. �

Theorem 3.4. Let f be a homeomorphism of a metric space X into a metric
space Y . The following are equivalent:

(i) f is hyperquasisymmetric;
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(ii) there exists a homeomorphism η : [0,∞) → [0,∞) such that for any four
distinct points x1, . . . , x4 ∈ X

(3.1)
dY (f(x1), f(x2))

dY (f(x3), f(x4))
≤ η

(

dX(x1, x2)

dX(x3, x4)

)

;

(iii) ωf is controlled by some homeomorphism η : [0,∞) → [0,∞) and there exists
c > 0 such that for all x1, x2 ∈ X

(3.2) dY (f(x1), f(x2)) ≥ cωf(dX(x1, x2));

(iv) Ff is hyperquasisymmetric.

Remark 3.5. The mappings satisfying (3.1) have previously appeared in the
literature on several occasions. Ivascu [19] called them “freely quasisymmetric”; we
do not use this term to avoid confusion with Väisälä’s well-known terminology [35].
Aseev and Shalaginov [1] studied such mappings in the context of self-similar spaces.
They proved, among other things, that a mapping f : X → Y satisfies (3.1) if and
only if it lifts to a quasisymmetric mapping f × f : X ×X → Y ×Y . See also [30].
Ghamsari and Herron [14] and Herron and Mayer [17] studied this class of maps
in connection with the question of characterizing bi-Lipschitz homogeneous Jordan
curves. Combining Theorem 3.4 with Theorem E of [17] leads to the following
result: a Jordan curve Γ in a doubling metric space is bi-Lipschitz homogeneous and
bounded turning if and only if it admits a hyperquasisymmetric parametrization.

Proof of Theorem 3.4. (i)⇒(ii). Suppose that Ff is η-quasisymmetric.
Choose distinct points x1, . . . , x4 ∈ X and set A = {x1, x3}, B = {x2, x3} and
C = {x1, x4}. Then

D(A, C) = min{dX(x3, x4), max{dX(x1, x3), dX(x1, x4)}} ≥ 1

2
dX(x3, x4)

and

D(A, B) = min{dX(x1, x2), max{dX(x1, x3), dX(x2, x3)}} ≤ dX(x1, x2).

Similar considerations show that

D(Ff (A), Ff (B)) ≥ 1

2
dY (f(x1), f(x2))

and

D(Ff (A), Ff (C)) ≤ dY (f(x3), f(x4)).

Using the quasisymmetry of Ff , we find

dY (f(x1), f(x2))

dY (f(x3), f(x4))
≤ 2η

(

2
dX(x1, x2)

dX(x3, x4)

)

.

Thus f satisfies (ii) with the function η1(t) = 2η(2t).
(ii)⇒(iii). The first part of (iii) follows immediately from (ii). To prove (3.2),

let δ = dX(x1, x2), pick ǫ > 0 and choose x3, x4 ∈ X so that dX(x3, x4) ≤ δ and
dY (f(x3), f(x4)) ≥ ωf(δ) − ǫ. Using (3.1) with xi appropriately rearranged, we
obtain

dY (f(x1), f(x2)) ≥ η(1)−1(ωf (δ) − ǫ),

and (iii) follows with c = 1/η(1).
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(iii)⇒(i). First we prove that Ff itself has the properties listed in (iii). It is
easy to see that Ff has the same modulus of continuity as f . Given δ ∈ Dist(H(X)),
let {δn} be as in Lemma 3.3. For any t > 0 we have

ωf (tδ) ≤ η(tδn/δ)ωf(δn) ≤ η(tδn/δ)ωf (δ).

Letting n → ∞ yields ωf(tδ) ≤ η(t)ωf (δ). Thus the modulus of continuity of Ff is
controlled by η.

To prove that Ff satisfies (3.2), pick A, B ∈ H(X) and let s = D(A, B). We
may assume that there exists a sequence {an} ⊂ A such that sn := distX(an, B) →
s; otherwise interchange A and B. Passing to a subsequence, we can ensure that
one of the following two cases occurs.

Case 1. For each n there is bn ∈ B such that dX(an, bn) = sn. Inequality (3.2)
implies

(3.3) distY (f(an), f(B)) ≥ cωf (sn).

Since sn ∈ Dist(X), it follows that

(3.4) lim
n→∞

ωf (sn) ≥ lim
n→∞

η(s/sn)−1ωf(s) = η(1)−1ωf (s).

Combining (3.3) and (3.4) we obtain D(f(A), f(B)) ≥ cη(1)−1ωf(s). Thus Ff

satisfies (3.2) with the constant c′ = c/η(1).
Case 2. the distance from an to B is not achieved for any n. Inequality (3.2)

implies

(3.5) distY (f(an), f(B)) ≥ c lim
ǫ↓0

ωf (sn + ǫ).

Choose a sequence {bmn} ⊂ B such that dX(an, bmn) ↓ sn as m → ∞. Since
dX(an, bmn) ∈ Dist(X), we have

ωf(s) ≤ η(s/sn) lim
ǫ↓0

ωf(sn + ǫ).

The latter inequality and (3.5) yield D(f(A), f(B)) ≥ cη(1)−1ωf (s). This com-
pletes the proof of property (3.2) for Ff .

Finally, for any distinct A, B, C ∈ H(X) we have

D(f(A), f(B))

D(f(A), f(C))
≤ ωf (D(A, B))

c′ωf (D(A, C))
≤ 1

c′
η

(

D(A, B)

D(A, C)

)

,

which proves (i).
(i)⇒(iv). If f is hyperquasisymmetric, then it satisfies (iii), and so does Ff (by

the previous step). Since (iii) implies (i), Ff is hyperquasisymmetric. �

Remark 3.6. The proof of implication (iii)⇒(i) works for unbounded closed
sets as well. Therefore, a hyperquasisymmetric mapping f : X → Y induces
(hyper-)quasisymmetric mappings on all components of CL(X).

Corollary 3.7. Let X be a Gromov hyperbolic space, and let d′ and d′′ be two
visual metrics on its boundary ∂X. Then the identity map id : (∂X, d′) → (∂X, d′′)
is hyperquasisymmetric.

Proof. There exist α > 0 and C > 1 such that

C−1(d′(p, q))α ≤ d′′(p, q) ≤ C(d′(p, q))α

for all p, q ∈ ∂X (see, e.g. Proposition III.H.3.21 in [9]). This and Theorem 3.4
imply that id is hyperquasisymmetric. �
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Corollary 3.7 can be generalized as follows. Bonk and Schramm [7] call f :
X → Y a snowflake map if there exist α > 0 and C ≥ 1 such that

C−1dX(x1, x2)
α ≤ dY (f(x1), f(x2)) ≤ CdX(x1, x2)

α

for all x1, x2 ∈ X . By Theorem 3.4 snowflake maps are hyperquasisymmetric.
Examples of snowflake maps are provided by Theorem 6.5 [7], which asserts that
rough similarities between Gromov hyperbolic spaces induce snowflake maps on
their boundaries.

4. Hyperconformal dimension

The following definition is motivated by Corollary 3.7.

Definition 4.1. Let X be a metric space. The hyperconformal dimension of
X is defined by

HCdimX = inf{Hdim f(X) : f is hyperquasisymmetric},
where Hdim stands for the Hausdorff dimension [24].

Definition 4.1 is modeled after the more commonly used definition of conformal
dimension [6, 16, 26]:

CdimX = inf{Hdim f(X) : f is quasisymmetric}.
Evidently CdimX ≤ HCdim X ≤ HdimX . By virtue of Corollary 3.7 both confor-
mal and hyperconformal dimensions of the boundary of a hyperbolic space are well-
defined. Moreover, conformal dimension of ∂X is invariant under quasi-isometries
of X , while hyperconformal dimension is invariant under rough similarities of X [7].

Since hyperquasisymmetric maps of metric spaces preserve more structure than
general quasisymmetric maps, one can expect HCdim X to reveal some features of
X that are not recorded by CdimX . For instance, conformal dimension does not
distinguish between spaces X with CdimX < 1 [22, 33]. This is in contrast with
the following result.

Theorem 4.2. For every s ≥ 0 there exists a compact metric space X with
HCdimX = s.

Proof. For each s ∈ {0} ∪ [1,∞) there exists a compact metric space X such
that CdimX = Hdim X = s and therefore HCdim X = s [5, 8, 26, 32]. It remains
to consider the case 0 < s < 1. For any such s we shall construct X ⊂ R as a union
of two generalized Cantor sets [24, 4.11]. Given an infinite set of positive integers
E ⊂ {1, 2, . . .}, define a sequence λE = {λE

n : n ≥ 1} so that λE
n = 1/2 for n /∈ E

and
∏n

k=1 λE
k = 2−n/s for n ∈ E. Let

C(λE) =
∞
⋂

n=0

2n

⋃

j=1

In
j ,

where I0
1 = [0, 1] and the other closed intervals In

j are defined as follows. The

intervals {In
j }2n

j=1 are disjoint, each of length equal to µE
n :=

∏n
k=1 λE

k ; furthermore,

each In
j is contained in an interval In−1

i and shares an endpoint with it.

By virtue of [24, 4.11] we have Hdim C(λE) = s for any E as above. Let ni be
a strictly increasing sequence of integers such that

(4.1) ni+2 − ni >
ni+1 − ni

s
+ 1, i ≥ 1,
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and

(4.2) lim
i→∞

ni

i
= ∞.

Define E = {n2i−1 : i ≥ 1}, F = {n2i : i ≥ 1}, and X = C(λE) ∪ (1 + C(λF )) ⊂ R.
Clearly HdimX = s. We claim that HCdim X = s, or, equivalently, Hdim f(X) ≥ s
for any hyperquasisymmetric mapping f .

A generalized Cantor set such as C(λE) contains the endpoints of all intervals
In
j used in its construction. Therefore, for any i ≥ 1 the set X contains a pair

of points ai, bi such that bi − ai = 2−ni/s. Furthermore, X contains the points
that split [ai, bi] into 2ni+2−ni−1 equal subintervals. Suppose that f : X → Y is
hyperquasisymmetric, and c > 0 is as in (3.2). For every integer j between 1 and
ni+2 − ni − 1 we have

(4.3) ωf (2−j−ni/s) ≥ 2−jdY (f(ai), f(bi)) ≥ 2−jcωf(2−ni/s).

Setting j equal to the smallest integer greater than (ni+1 − ni)/s (cf. (4.1)), we
obtain

ωf(2−ni+1/s) ≥ 2−(ni+1−ni)/s−1cωf (2−ni/s).

Therefore, for all i > 1

(4.4) ωf (2−ni/s) ≥
( c

2

)i−1

2−(ni−n1)/sωf(2−n1/s) =: C1

( c

2

)i−1

2−ni/s.

For any ǫ > 0 inequality (4.4) implies

lim
i→∞

2(1+ǫ)ni/sωf(2−ni/s) ≥ C1 lim
i→∞

2ǫni/s
( c

2

)i−1

= ∞,

where in the last step we used (4.2). This and (4.3) yield

lim
δ↓0

ωf (δ)δ−1−ǫ = ∞.

Using (3.2) again, we conclude that

Hdim f(X) ≥ (1 + ǫ)−1 Hdim X.

Since ǫ was arbitrary, Hdim f(X) ≥ HdimX as desired. �

A metric space X is called Ahlfors regular if there exist s > 0 and C ≥ 1 such
that the s-dimensional Hausdorff measure Hs satisfies

C−1rs ≤ Hs(B(x, r)) ≤ Crs

for all x ∈ X and 0 < r ≤ 2 diamX . Since the boundary of a Gromov hyperbolic
group is Ahlfors regular, it is natural to ask the following

Question 4.3. Are there any Ahlfors regular metric spaces with hyperconfor-
mal dimension between 0 and 1?

The following proposition shows that HCdim is much more rigid than Cdim.

Proposition 4.4. If X contains a nontrivial rectifiable curve, then HCdim X =
HdimX.
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Proof. Let γ : [0, L] → X be a curve parametrized by arclength and such
that γ(0) 6= γ(1). Suppose that f : X → Y is surjective and hyperquasisymmetric.
Our goal is to prove that HdimY ≥ HdimX . Given n ≥ 1, let xi = γ(Li/n),
i = 0, . . . , n. Since

n
∑

i=1

dY (f(xi), f(xi−1)) ≥ dY (f(γ(0)), f(γ(1))) =: s

and dX(xi, xi−1) ≤ L/n for all i, it follows that ωf (L/n) ≥ s/n. Using the fact
that ωf is nondecreasing, we obtain lim infδ→0 δ−1ωf (δ) > 0. By property (iii) in
Theorem 3.4, f−1 is Lipschitz on small scales. Thus Hdim Y ≥ Hdim X . �

Proposition 4.4 implies that the hyperconformal dimension of the Sierpiński
carpet S is equal to HdimS = log 8/ log 3. Although the precise value of CdimS
remains unknown, it is known to be strictly less than HdimS [6, 21].

Bonk and Kleiner [6] introduced another version of Cdim, called Ahlfors regular
conformal dimension. It is defined only for Ahlfors regular metric spaces X :

ARCdim X = inf{Hdim f(X) : f is quasisymmetric and f(X) is Ahlfors regular}.
Clearly CdimX ≤ ARCdim X ≤ Hdim X . It is therefore of interest to compare
ARCdim with HCdim. The Sierpiński carpet S has ARCdimS < HCdim S [21]. It
remains unclear if there is an Ahlfors regular space X with ARCdim X > HCdimX .
No such spaces would exist if hyperquasisymmetric mappings preserved Ahlfors
regularity; however, this is not the case.

Proposition 4.5. There exists a hyperquasisymmetric mapping of the real line
R onto a metric space Y that is not Ahlfors regular.

Proof. Let Y be the real line R equipped with metric dY (a, b) = ρ(|a − b|),
where ρ : [0,∞) → [0,∞) is an increasing concave function to be determined. The
identity map id : R → Y is η-quasisymmetric provided that

(4.5)
ρ(tu)

ρ(u)
≤ η(t), t, u > 0.

We shall choose ρ so that it is C1 smooth on (0,∞) and

(4.6) C−1 ≤ uρ′(u)

ρ(u)
≤ C, u > 0

for some C ≥ 1. It is easy to see that (4.6) yields (4.5) with η(t) = max{tC , t1/C}.
Theorem 3.4 implies that id : R → Y is hyperquasisymmetric as long as it is
quasisymmetric. It remains to construct ρ so that (4.6) holds but Y is not Ahlfors
regular. One possible choice is

ρ(u) =

{

u log(3/u), 0 < u ≤ 1;

(log 3 − 1)u + 1, u > 1.

Indeed,

ρ′(u) =

{

log(3/u) − 1, 0 < u ≤ 1;

log 3 − 1, u > 1,

hence ρ is concave and

1 − 1

log 3
≤ uρ′(u)

ρ(u)
≤ 1, u > 0.
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It remains to observe that HdimY = 1 but the 1-dimensional Hausdorff measure
on Y is not locally finite. �

5. Embeddings into hyperspaces

In this section we consider isometric and bi-Lipschitz embeddings of metric
spaces into hyperspaces. Of course, every space X embeds isometrically into H(X)
via the map x 7→ {x}; our goal is to embed X into the hyperspace of a simpler
metric space, such as R. Before stating our first result, we introduce the notation
l∞+ = {x ∈ l∞ : xk ≥ 0 ∀k}.

Theorem 5.1. Let X be a connected metric space. If C ∈ CL(X) is unbounded,
then H(X ; C) contains an isometric copy of l∞+ . Furthermore, every separable

metric space admits a
√

2-bi-Lipschitz embedding into H(X ; C), and every bounded

separable metric space admits an isometric embedding. The constant
√

2 is sharp.

Proof. Given x = (x1, x2, . . . ) ∈ l∞+ , let xij = min{xi, j} for i, j = 1, 2, . . . .
The sequence x̃ := (x11, x21, x12, x31, x22, x13, . . . ) satisfies 0 ≤ x̃k ≤ k for all k ≥ 1.
Also, the map x 7→ x̃ is an isometry of l∞+ into itself.

Since C is unbounded, it contains a sequence {cn} such that

d(cn, c0) ≥ d(cn−1, c0) + 2n, n ≥ 1.

For x ∈ l∞+ let

A(x) =

(

C \
∞
⋃

n=1

B(cn, x̃n)

)

∪
∞
⋃

n=1

∂B(cn, x̃n).

Since x̃ ∈ l∞+ , it follows that A(x) ∈ H(X ; C). It is straightforward to check that
D(A(x), A(y)) = ‖x̃ − ỹ‖ = ‖x − y‖ for all x, y ∈ l∞+ .

Every separable metric space embeds isometrically into l∞ by Frechét’s theo-
rem. The map (x1, x2, . . . ) 7→

√
2(x+

1 , x−
1 , x+

2 , x−
2 , . . . ) is easily seen to be a

√
2-bi-

Lipschitz embedding of l∞ into l∞+ . Also, a bounded subset of l∞ can be isometri-
cally mapped into l∞+ by translation x 7→ x + (M, M, . . . ), where M is sufficiently
large.

It remains to show the sharpness of the constant
√

2. Suppose that F : Z →
H(R; R) is an L-bi-Lipschitz embedding. Observe that for any sets A, B ∈ H(R; R)
we have D(A, B) ≤ max{D(A, R), D(B, R)}. Therefore, for every n ∈ Z

2n/L ≤ D(F (n), F (−n))

≤ max{D(F (n), R), D(F (−n), R)}
≤ max{D(F (n), F (0)), D(F (−n), F (0))} + D(F (0), R)

≤ Ln + D(F (0), R).

Letting n → ∞, we obtain L ≥
√

2. �

Despite the last statement of Theorem 5.1, many spaces of the form H(X ; C) do
contain an isometric copy of l∞. The following is a partial result in this direction.

Proposition 5.2. Let X be a geodesic metric space. Suppose that C ∈ CL(X)
contains a sequence {cn : n ≥ 1} such that dist(cn, C \{cn}) → ∞ as n → ∞. Then
l∞ isometrically embeds into H(X ; C).
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Proof. For each n ≥ 1 let dn = dist(cn, C \ {cn}) and choose a geodesic arc
γn : [0, 1] → X of length dn/2 so that γ(0) = cn. For x = (x1, x2, . . . ) ∈ l∞ set
xij = min{dj/4, max{−dj/4, xi}}, i, j ≥ 1. The sequence

x̃ := (x11, x21, x12, x31, x22, x13, . . . )

satisfies |x̃n| ≤ dn/4, and the map x 7→ x̃ is an isometry of l∞ into itself.
Let A(x) = (C \ {cn : n ≥ 1}) ∪ {γn(2x̃n/dn + 1/2) : n ≥ 1}. It is clear that

A(x) ∈ H(R; C) and D(A(x), A(y)) ≤ ‖x̃ − ỹ‖l∞ for all x, y ∈ l∞. To prove the
reverse inequality, choose k so that |x̃k − ỹk| = ‖x̃ − ỹ‖l∞ and observe that

dist(γn(2x̃n/dn + 1/2), A(y)) = |x̃n − ỹn|.
This completes the proof. �

For example, Proposition 5.2 implies that every separable metric space admits
an isometric embedding into H(R, {n2 : n ∈ Z}).
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[31] H. Toruńczyk and J. West, A Hilbert space limit for the iterated hyperspace functor, Proc.
Amer. Math. Soc. 89 (1983), no. 2, 329–335.

[32] J. T. Tyson, Sets of minimal Hausdorff dimension for quasiconformal maps, Proc. Amer.
Math. Soc. 128 (2000), no. 11, 3361–3367.

[33] J. T. Tyson, Lowering the Assouad dimension by quasisymmetric mappings, Illinois J. Math.
45 (2001), no. 2, 641–656.

[34] J. T. Tyson, Bi-Lipschitz embeddings of hyperspaces of compact sets, Fund. Math., to appear.
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