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Abstract. We prove that quasiregular gradient mappings exhibit higher de-

gree of Hölder continuity than the one that is optimal for general quasiregular

mappings. This improves a classical result of Morrey on the regularity of
strong solutions of uniformly elliptic PDEs with measurable coefficients. Our

Hölder estimate for homogeneous solutions of such equations is close to the

best possible.

1. Introduction

Let Ω be a domain in R2 and let f : Ω → R2 be a Sobolev mapping of the class
W 1,2

loc (Ω; R2). For almost every point z ∈ Ω the mapping f is differentiable at z,
which allows one to define the differential matrix Df(z) and Jacobian determinant
Jf (z) = detDf(z). Let |A| denote the operator norm of a matrix A. The mapping
f is called K-quasiregular if |Df(z)|2 ≤ KJf (z) for a.e. z ∈ Ω, where K ≥ 1.

Every K-quasiregular mapping f is locally Hölder continuous with exponent
1/K (i.e. f ∈ C

0,1/K
loc (Ω)), as was proved by Morrey [23] for one-to-one mappings

and by Nirenberg [24] in the general case. Actually, Morrey and Nirenberg estab-
lished the Hölder norm estimates assuming f ∈ C1, but the general case is not
much different, see [14]. Different proofs were given by Ahlfors [1] and Mori [22].

It is often convenient to identify R2 with C and introduce the complex differ-
ential operators

∂f

∂z
=

1
2

(
∂f

∂x
− i

∂f

∂y

)
and

∂f

∂z̄
=

1
2

(
∂f

∂x
+ i

∂f

∂y

)
.

A mapping f ∈W 1,2
loc (Ω; C) is K-quasiregular in Ω if and only if∣∣∣∣∂f∂z̄

∣∣∣∣ ≤ K − 1
K + 1

∣∣∣∣∂f∂z
∣∣∣∣ a.e. in Ω.

Given a real-valued function u ∈W 2,2
loc (Ω), we can consider its complex gradient

f = ∂u/∂z as a mapping from Ω into C. It is easy to see that f is holomorphic
if and only if u is harmonic. More generally, f is quasiregular if and only if u is
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a strong solution of a second order uniformly elliptic PDE in non-divergence form
with no terms of lower order.

In early 1980s Bojarski and Iwaniec [7] observed that the complex gradient of a
p-harmonic function (for p ≥ 2) is a K-quasiregular mapping with K = p− 1. This
led, among others, to the conclusion that p-harmonic functions are of class C1,α

loc with
α = 1/(p − 1). This result was later extended to p > 1 [3, 21], sharpened [2, 15]
and generalized [20].

The above demonstrates that quasiregular gradient mappings (i.e. those of the
form f = ∂u/∂z with u ∈ W 2,2

loc (Ω)) form an important subclass of quasiregular
mappings. It is therefore of interest to establish the best possible Hölder estimates
for this class. First it should be observed that the C0,1/K

loc -continuity of general
K-quasiregular mappings cannot be improved, as is demonstrated by the example
ϕ(z) = z|z|1/K−1. Note also that ϕ(z) = ∂(c|z|1+1/K)/∂z̄, where c = 2K/(K + 1).

This stands in contrast to the main result of the present paper (Theorem 1.1).
Before stating it, let us recall definitions of relevant Hölder spaces. Given a compact
set E ⊂ C and a continuous function h : E → C, define the modulus of continuity
of h on E by

ωh(E, δ) = sup {|h(z1)− h(z2)| : z1, z2 ∈ E, |z1 − z2| ≤ δ} .

The Hölder space of order α, 0 < α ≤ 1, is

C0,α(E) =
{
h : E → C : sup

δ>0
δ−αωh(E, δ) <∞

}
.

We will also use the little Hölder space c0,α(E), 0 < α < 1:

c0,α(E) =
{
h ∈ C0,α(E) : lim

δ→0
δ−αωh(E, δ) = 0

}
.

For k ≥ 1 the spaces Ck,α(E) and ck,α(E) consist of functions whose k-th order
partial derivatives are in C0,α(E) or c0,α(E), respectively. Finally, Ck,αloc (Ω) consists
of the functions that belong to Ck,αloc (E) for every compact set E ⊂ Ω. The spaces
ck,αloc (Ω) are defined similarly.

Theorem 1.1. Let u ∈ W 2,2
loc (Ω). Suppose that f = ∂u/∂z is K-quasiregular

in Ω, K > 1. Then f ∈ c0,1/Kloc (Ω) and, consequently, u ∈ c1,1/Kloc (Ω).

In view of this result it seems probable that K-quasiregular gradient mappings
are C0,α

loc -continuous with α > 1/K. This was conjectured by D’Onofrio [9]; in fact,
his conjecture was the starting point of our investigation. We believe that the best
possible value of α is

1
2

(√
1 + 14K−1 +K−2 − 1−K−1

)
,

see §§4,5.
The paper is organized as follows. In §2 we discuss a certain rigidity property

of quasiregular mappings [16, 17] which is crucial for the proof of Theorem 1.1.
The proof itself is carried out in §3. An upper bound for the Hölder exponent is
given in §4. This bound is realized by a homogeneous mapping, which leads us
to investigate such mappings in §5. In the final section our results are restated in
terms of uniformly elliptic partial differential equations in non-divergence form.
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2. Preliminaries

First we examine the K-quasiregular mappings Ω → C that do not belong to
c
0,1/K
loc (Ω). According to the following theorem, they have at least one power-like

singularity.

Theorem 2.1. Let f : Ω → C be a K-quasiregular mapping, and let E be a
compact subset of Ω. If f /∈ c0,1/K(E), then there exist z0 ∈ E, A > 0, and a
continuous function θ : (0, 1) → R such that:

(i) f is one-to-one in a neighborhood of z0;
(ii) as r ↓ 0,

(2.1) f(z0 + reiϕ) = f(z0) +Ar1/Kei(ϕ+θ(r)) + o(r1/K),

where o(r1/K) is uniform in ϕ ∈ [0, 2π].

A prototype of this result appeared in [16], where the asymptotic expan-
sion (2.1) was derived under the assumption that

(2.2) lim sup
z→z0

|f(z)− f(z0)|
|z − z0|1/K

> 0.

This result is weaker than Theorem 2.1, because it is not obvious that the condition
f /∈ c0,1/K(E) implies (2.2) for some z0 ∈ E. However, in a later paper [17] it is
proved that if a K-quasiconformal mapping f fails to be in c0,1/K(E), then there
exists z0 ∈ E for which (2.2) holds. (A mapping is K-quasiconformal if it is both
K-quasiregular and one-to-one). This reduces the proof of Theorem 2.1 to the
following simple argument.

Proof. By the above-mentioned results Theorem 2.1 is true for one-to-one
mappings. Therefore, we only need to prove statement (i).

Suppose that f is K-quasiregular in Ω, and f /∈ c0,1/K(E). Then there exist
sequences {aj} and {bj} with a common limit z0 ∈ E such that aj , bj ∈ E and

(2.3) lim
j→∞

|f(aj)− f(bj)|
|aj − bj |1/K

> 0.

The mapping f admits the Stoilow factorization [19, p.247] f = ψ ◦ h, where h is
K-quasiconformal and ψ is a holomorphic function.

Suppose that ψ′ vanishes at h(z0). Then for any ε > 0 there is r > 0 such that
|ψ′| ≤ ε in Dr = {ζ ∈ C : |ζ − h(z0)| < r} and Dr ⊂ h(Ω). Choose a compact set
E ⊂ Ω that contains a neighborhood of z0, and let

B = sup
z1,z2∈E

|h(z1)− h(z2)|
|z1 − z2|1/K

.

For large j we have aj , bj ∈ E ∩ h−1(Dr), hence

|f(aj)− f(bj)| ≤ ε|h(aj)− h(bj)| ≤ Bε|aj − bj |1/K .
Since ε > 0 was arbitrary, this contradicts (2.3). Therefore, ψ′(h(z0)) 6= 0, which
proves statement (i) of the theorem. �

For future references we record a special case of the Poincaré lemma.

Lemma 2.2. Suppose that f ∈ W 1,2
loc (Ω; C), where Ω is a domain in C. If Ω is

simply connected, then the following statements are equivalent.



4 LEONID V. KOVALEV AND DAVID OPĚLA

(i) there exists u ∈W 2,2
loc (Ω) such that f = ∂u/∂z a.e. in Ω;

(ii) Im ∂f/∂z̄ = 0 a.e. in Ω.

For general Ω (i) implies (ii).

Proof. Let us write f(x + iy) = ξ(x, y) + iη(x, y) with x, y, ξ, η real. One
immediately sees that (i) is equivalent to the exactness of differential form ξdx−ηdy.
Since

Im
∂f

∂z̄
=

1
2

Im
{
∂ξ

∂x
+ i

∂η

∂x
+ i

∂ξ

∂y
− ∂η

∂y

}
=

1
2

{
∂η

∂x
+
∂ξ

∂y

}
,

condition (ii) holds if and only if the form ξdx − ηdy is closed. Therefore, (i)
implies (ii). When Ω is simply-connected, (i) is equivalent to (ii) by the Poincaré
lemma. �

3. Proof of Theorem 1.1

Proof. Let f : Ω → C is a K-quasiregular gradient mapping, i.e. f = ∂u/∂z.
By Lemma 2.2

(3.1) Im
∂f

∂z̄
= 0, a.e. z ∈ Ω.

Suppose that f /∈ c0,1/Kloc (Ω); this will eventually lead to a contradiction. Let z0, A
and θ be as in Theorem 2.1. Composing f with appropriate linear transformations,
we can make sure that z0 = f(z0) = 0, A = 1, and

(3.2) α := lim sup
r→0

cos θ(r) > 0.

Regarding (3.2), note that by Theorem 2.2 in [16], limr→0 θ(r) need not exist. But
we can always replace f with eiψf , where the constant ψ ∈ R is chosen so that (3.2)
holds.

Let R > 0 be sufficiently small so that

G := {reiϕ : 0 < r < R, 0 < ϕ < π/2} ⊂⊂ Ω.

Applying Stokes’ theorem [18, Thm. 1.1.1] and using (3.1), we obtain

Re
∫
∂G

f(z)dz = Re
∫
G

∂f

∂z̄
dz̄ ∧ dz = Re

{
(−2i)

∫
G

∂f

∂z̄
dL2

}
= 0,

where L2 is the 2-dimensional Lebesgue measure. The above application of Stokes’
theorem can be justified as follows. By Theorem 3 in [10, 4.2], there exists a
sequence {fk} ⊂W 1,p(G) ∩ C∞(G) such that fk → f in W 1,p(G). In particular,∫

G

∂fk
∂z̄

dL2 →
∫
G

∂f

∂z̄
dL2.

Furthermore,
∫
∂G

fk(z)dz →
∫
∂G

f(z)dz by Theorem 1 in [10, 4.3]. Thus we can
pass to the limit k →∞ after applying Stokes’ theorem to fk.
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On the other hand,
∫
∂G

f(z)dz can be computed directly using (2.1).

Re
∫
∂G

f(z)dz = Re
∫ R

0

r1/Keiθ(r)dr + Re
∫ π/2

0

R1/Kei(ϕ+θ(R))iReiϕdϕ

− Re
∫ R

0

r1/Kei(π/2+θ(r))idr + o(R1+1/K)

= 2
∫ R

0

r1/K cos θ(r)dr −R1+1/K

∫ π/2

0

sin(2ϕ+ θ(R))dϕ

+ o(R1+1/K), R→ 0.

Since
∫ π/2
0

sin(2ϕ+ θ(R))dϕ = cos θ(R), we conclude that

(3.3) 2
∫ R

0

r1/K cos θ(r)dr = R1+1/K cos θ(R) + o(R1+1/K), R→ 0.

Let us introduce new variables s = r1+1/K , S = R1+1/K , and a function τ(s) =
θ(sK/(K+1)), s ∈ (0, 1]. With this notation (3.3) simplifies to

(3.4)
2K
K + 1

∫ S

0

cos τ(s)ds = S cos τ(S) + o(S), S → 0.

Suppose that cos τ(s) → α as s → 0. (Recall that α > 0 is defined by (3.2).)
Dividing both sides of (3.4) by S and letting S → 0, we obtain 2Kα/(K + 1) = α,
a contradiction. Therefore, lims→0 cos τ(s) does not exist. This allows us to choose
β and γ so that

(3.5) lim inf
s→0

cos τ(s) < γ < β < α and 0 <
K + 1
2K

β < γ.

There is a sequence sj such that sj ↓ 0 and cos τ(sj) = β for all j. Since τ is
continuous, for sufficiently large j we can define tj = inf{t : t > sj , cos τ(t) = γ}.
Our choice of γ implies tj ↓ 0 as j →∞.

Now by (3.4) we have

(3.6)
∫ sj

0

cos τ(s)ds =
K + 1
2K

βsj + o(sj)

The definition of tj and (3.5) yield

(3.7)
∫ tj

sj

cos τ(s)ds ≥ γ(tj − sj) ≥
K + 1
2K

β(tj − sj).

Adding (3.6) to (3.7) we obtain

(3.8)
∫ tj

0

cos τ(s)ds ≥ K + 1
2K

βtj + o(sj) =
K + 1
2K

βtj + o(tj).

But (3.4) implies

(3.9)
∫ tj

0

cos τ(s)ds =
K + 1
2K

γtj + o(tj)

Comparing (3.8) with (3.9) we conclude that γ ≥ β, a contradiction. This completes
the proof of Theorem 1.1. �
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4. An example

The following example of a K-quasiregular gradient mapping is essentially the
same as in section 7 of [15]. The only difference is that parameter α in (4.2) is less
than 1, while in [15] it is greater than 1.

Example 4.1. Given K > 1, let α = αK , where

(4.1) αK =
1
2

(√
1 + 14K−1 +K−2 − 1−K−1

)
,

and let

(4.2) f(z) = |z|α
(
z

|z|
− 1− α

3 + α

|z|3

z3

)
, z ∈ C.

Then f is a K-quasiregular gradient mapping in C, and f /∈ c0,αloc (C).

Proof. Elementary computations show that 0 < α < 1 (see Remark 4.2 be-
low). It is obvious that lim supz→0|f(z)|/|z|α > 0, hence f /∈ c0,αloc (C). In a neigh-
borhood of any point z 6= 0 one can write (4.2) as

f(z) = z
α+1

2 z̄
α−1

2 − 1− α

3 + α
z

α−3
2 z̄

α+3
2 .

Therefore,

∂f

∂z
=
α+ 1

2
|z|α−1 +

(1− α)(3− α)
2(3 + α)

z
α−5

2 z̄
α+3

2 ;

∂f

∂z̄
=
α− 1

2
z

α+1
2 z̄

α−3
2 − 1− α

2
z

α−3
2 z̄

α+1
2

= (α− 1)|z|α−3 Re(z2).

Since the first derivatives of f are homogeneous of degree α − 1 > −1, it follows
that f ∈ W 1,2

loc (C; C). By Lemma 2.2 f is the complex gradient of some function
u ∈W 2,2

loc (C); in fact, one can take

(4.3) u(z) =
4

α+ 3
|z|α−1 Re(z2).

It remains to show that f is K-quasiregular. In view of homogeneity it suffices to
prove that

(4.4)
∣∣∣∣∂f∂z̄

∣∣∣∣ ≤ K − 1
K + 1

∣∣∣∣∂f∂z
∣∣∣∣ , z = eiϕ, 0 ≤ ϕ ≤ 2π.

When z = eiϕ, we have∣∣∣∣∂f∂z
∣∣∣∣2 =

1
4

∣∣∣∣α+ 1 +
(1− α)(3− α)

3 + α
e−4iϕ

∣∣∣∣2
=

1
4

{
(α+ 1)2 +

(1− α)2(3− α)2

(3 + α)2
+ 2

(1− α2)(3− α)
3 + α

cos 4ϕ
}

=
1
4

{
64α2

(3 + α)2
+ 4

(1− α2)(3− α)
3 + α

cos2 2ϕ
}

=
16α2

(3 + α)2
+

(1− α2)(3− α)
3 + α

cos2 2ϕ.
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Since ∣∣∣∣∂f∂z̄
∣∣∣∣2 = (1− α)2 cos2 2ϕ,

it follows that
|∂f/∂z|2

|∂f/∂z̄|2
=

16α2

(3 + α)2(1− α)2 cos2 2ϕ
+

(1− α2)(3− α)
(1− α)2(3 + α)

≥ 16α2

(3 + α)2(1− α)2
+

(1− α2)(9− α2)
(1− α)2(3 + α)2

=
(3 + α2)2

(1− α)2(3 + α)2
.

(4.5)

In order to prove (4.4), it remains to verify the following identity.

(4.6)
(1− α)(3 + α)

3 + α2
=
K − 1
K + 1

.

But (4.6) is equivalent to quadratic equation α2 + (1 +K−1)α− 3K−1 = 0, whose
positive root is α = αK . �

Remark 4.2. For every K > 1 we have

0 < αK < min{1/
√
K, 3/K}.

Indeed, αK > 0 because√
1 + 14K−1 +K−2 >

√
1 + 2K−1 +K−2 = 1 +K−1.

With notation t = 1/
√
K the inequality αK < 1/

√
K takes form

1
2

(√
1 + 14t2 + t4 − 1− t2

)
< t, 0 < t < 1,

which is equivalent to 1+14t2+t4 < (1+t)4. After further simplifications it reduces
to the trivial inequality 4t(t− 1)2 > 0.

It remains to prove that αK < 3/K, or, equivalently,√
1 + 14K−1 +K−2 < 1 + 7K−1.

The latter inequality is verified by squaring both sides.

Conjecture 4.3. Every K-quasiregular gradient mapping in dimension 2 is
locally Hölder continuous with exponent αK .

We will return to Example 4.1 in §6.

5. Homogeneous mappings

It is natural to attempt to prove Conjecture 4.3 for homogeneous mappings
first, since the conjectural extremal (Example 4.1) is homogeneous. The following
theorem applies to more general mappings than homogeneous ones, and provides a
nearly optimal Hölder exponent.

Theorem 5.1. Let f : C → C be a K-quasiregular gradient mapping, K > 1,
and suppose that

(5.1) f(reiϕ) = g(r)h(ϕ), r ≥ 0, ϕ ∈ R,



8 LEONID V. KOVALEV AND DAVID OPĚLA

where g : [0,∞) → [0,∞) is increasing and h : R → C has period 2π. Then
f ∈ C0,β

loc (C), where β = βK ∈ (0, 1) is determined from the equation

(5.2)
(1− β)(3 + β)√
9 + 22β2 + β4

=
K − 1
K + 1

.

Proof. To avoid trivialities, assume f nonconstant. This implies |h(ϕ)| > 0
for all ϕ; otherwise the set f−1(0) would not be discrete. Choose r > 0 so that
g′(r) exists and the circle {z : |z| = r} contains no branch points of f (which
are isolated by the Stoilow factorization theorem). Next we use the fact that all
directional derivatives of a quasiconformal mapping are of comparable size, see [19,
II.9]. More precisely,

g(r) lim sup
t→0

|h(ϕ+ t)− h(ϕ)|
|t|

= lim sup
t→0

|f(rei(ϕ+t))− f(reiϕ)|
|t|

≤ Cr lim sup
t→0

|f((r + t)eiϕ)− f(reiϕ)|
|t|

= Crg′(r)|h(ϕ)|, ϕ ∈ R,

where C is an absolute constant. Thus h ∈ C0,1(R). Let L be the Lipschitz constant
of h. Fix arbitrary ϕ ∈ R and r ∈ (0,∞), and apply [19, II.9] to majorize the radial
derivative of f by the tangential one.

lim sup
t→0

|g(r + t)− g(r)|
|t|

= lim
t→0

|f((r + t)eiϕ)− f(reiϕ)|
|th(ϕ)|

≤ C

|h(ϕ)|
lim sup
t→0

|f(rei(ϕ+t))− f(reiϕ)|
r|t|

≤ CLg(r)
r|h(ϕ)|

.

(5.3)

Therefore, g ∈ C0,1(a, b) whenever 0 < a < b < ∞. So far we have demonstrated
that f ∈ C0,1

loc (C \ {0}).
We are going to prove that

(5.4) lim sup
t→0

r−βg(r) <∞,

but first let us show that (5.4) implies the conclusion of the theorem. Indeed,
from (5.4) and (5.3) follows the existence of a constant C1 such that g′(r) ≤ C1r

β−1

for a.e. r ∈ (0, 1). Now for every 0 ≤ r1 < r2 ≤ 1 we have

g(r2)− g(r1) =
∫ r2

r1

g′(r)dr ≤ C1β
−1(rβ2 − rβ1 ) ≤ C1β

−1(r2 − r1)β .

Consequently, for every ϕ1, ϕ2 ∈ R with |ϕ1 − ϕ2| ≤ π

|f(r1eiϕ1)− f(r2eiϕ2)| ≤ |f(r1eiϕ1)− f(r2eiϕ1)|+ |f(r2eiϕ1)− f(r2eiϕ2)|

≤ C1β
−1|r1 − r2|β max

ϕ
|h(ϕ)|+ g(r2)L|ϕ1 − ϕ2|.

It is easy to see that both terms are dominated by |r1eiϕ1 − r2eiϕ2 |β , which implies
f ∈ C0,β

loc (C).
It remains to prove (5.4). Since h is absolutely continuous, its Fourier series∑

n∈Z cne
inϕ converges to h uniformly [28, II.8.6]. Thus

(5.5) f(reiϕ) = g(r)
∑
n∈Z

cne
inϕ, r ≥ 0, ϕ ∈ R.



QUASIREGULAR GRADIENT MAPPINGS 9

Furthermore, h ∈ W 1,2(R; C) because f ∈ W 1,2
loc (C; C). We can apply the differen-

tial operators

∂

∂z
=
e−iϕ

2

(
∂

∂r
− i

r

∂

∂ϕ

)
and

∂

∂z̄
=
eiϕ

2

(
∂

∂r
+
i

r

∂

∂ϕ

)
.

to (5.5) provided that g′(r) exists. Doing so we obtain

(5.6)
∂f

∂z
=
g(r)
2r

∑
n∈Z

(rg′(r)/g(r) + n)cnei(n−1)ϕ

and

(5.7)
∂f

∂z̄
=
g(r)
2r

∑
n∈Z

(rg′(r)/g(r)− n)cnei(n+1)ϕ,

where both series converge in L2. Since f is K-quasiregular,

(5.8)
∣∣∣∣∂f∂z̄

∣∣∣∣ ≤ k

∣∣∣∣∂f∂z
∣∣∣∣ a.e., where k =

K − 1
K + 1

.

In view of (5.6)-(5.8) and Parseval’s formula we have for a.e. r

(5.9)
∑
n∈Z

(γ − n)2|cn|2 ≤ k2
∑
n∈Z

(γ + n)2|cn|2, γ = rg′(r)/g(r).

Our goal is to prove that γ ≥ β; in doing so we may assume that γ < 1. Recall
that ∂f/∂z̄ is real-valued by Lemma 2.2. By virtue of (5.7) this is equivalent to

(5.10) (γ − n)cn = (γ + n+ 2)c̄−n−2, n ∈ Z.
Combining (5.9) and (5.10), we obtain

(γ + 1)2|c−1|2 + 2
∞∑
n=0

(γ − n)2|cn|2 ≤ k2(γ − 1)2|c−1|2

+ k2
∞∑
n=0

{
(γ + n)2 +

(
n+ 2− γ

n+ 2 + γ

)2

(γ − n)2
}
|cn|2.

Since (γ + 1)2 > k2(γ − 1)2, it follows that
∞∑
n=0

{(
2− k2

(
n+ 2− γ

n+ 2 + γ

)2
)

(γ − n)2 − k2(γ + n)2
}
|cn|2 ≤ 0,

where the equality can hold only if c−1 = 0. Since f is nonconstant, at least one of
the coefficients cn is nonzero, hence

(5.11)

(
2− k2

(
n+ 2− γ

n+ 2 + γ

)2
)

(γ − n)2 − k2(γ + n)2 ≤ 0

for some n ≥ 0. When n = 0, inequality (5.11) does not hold since(
2− k2

(
2− γ

2 + γ

)2
)
γ2 − k2γ2 > (2− k2)γ2 − k2γ2 = 2(1− k2)γ2 > 0.

Therefore, (5.11) must hold for some n ≥ 1. Dividing (5.11) by (γ − n)2 and
rearranging terms, we obtain

(5.12)
2
k2

≤
(
n+ γ

n− γ

)2

+
(
n+ 2− γ

n+ 2 + γ

)2

.
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As a function of n, the right-hand side of (5.12) decreases for n ∈ [1,∞), because
its derivative is equal to

−16γ(n+ 1)(n(n+ 2) + 2γ(n+ 1)2 + 3γ2 + 2γ3)
(n− γ)3(n+ 2 + γ)3

< 0.

Thus (5.12) holds with n = 1.

(5.13)
1
k2

≤ 1
2

{(
1 + γ

1− γ

)2

+
(

3− γ

3 + γ

)2
}

=
9 + 22γ2 + γ4

(1− γ)2(3 + γ)2
.

Let τ(γ) denote the right-hand side of (5.13). Differentiation yields

τ ′(γ) =
4(3 + γ2)(3 + γ(14− γ))

(1− γ)3(3 + γ)3
> 0, 0 < γ < 1.

Therefore, 1/
√
τ(γ) strictly decreases from 1 to 0 on the interval (0, 1). It follows

that β is well-defined by (5.2) and γ ≥ β. Integrating the differential inequality
g′(r)/g(r) ≥ β/r, we obtain (5.4). �

Two remarks are in order.

Remark 5.2. Comparing (5.2) and (4.6), we see that βK < αK for all K > 1.
This was to be expected, because we passed from pointwise inequality (5.8) to the
L2 estimate (5.9). On the other hand, it is not hard to prove that βK > 1/K for
all K > 1. Moreover, numerical computations show that the difference αK − βK
does not exceed 0.074, which is a relatively small error. This can be viewed as an
evidence in favor of Conjecture 4.3.

Remark 5.3. The proof of Theorem 5.1 is local in nature. If f admits decom-
position (5.1) only in a disk centered at 0, then f is locally C0,βK -continuous in
that disk.

In conclusion of this section we briefly indicate an application of Theorem 5.1
to more general mappings. Suppose that f : Ω → C is a K-quasiregular gradient
mapping with simple infinitesimal space at some point z0 ∈ Ω (see [13] for defini-
tions). Let f0 be the only element of the infinitesimal space of f at z0. Then f0
is a K-quasiregular gradient mapping as well, and it is homogeneous by [13, 4.1].
Applying Theorem 5.1 to f0 and using [13, 4.7], we obtain

lim sup
z→z0

|f(z)− f(z0)|
|z − z0|α

= 0, 0 < α < βK .

6. Elliptic equations

Let Ω be a domain in R2. Consider the following second-order equation in
non-divergence form:

(6.1) a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy = 0,

where a, b and c are measurable real-valued functions in Ω. Let λ1,2(x, y) be the
eigenvalues of the coefficient matrix(

a(x, y) b(x, y)
b(x, y) c(x, y)

)
.
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In what follows we assume that the operator appearing in (6.1) is uniformly elliptic,
that is, there exist K > 1 and λ0 > 0 such that

(6.2) λ0 ≤ λ1,2(x, y) ≤ Kλ0

for a.e. (x, y) ∈ Ω.
A function u ∈ W 2,2

loc (Ω) is called a strong solution of equation (6.1) if it sat-
isfies (6.1) a.e. in Ω. Although a strong solution might not be twice continuously
differentiable, it has a continuous representative which belongs to C1,1/K

loc (Ω). This
result, which has no analogue in higher dimensions [27], goes back to the classical
paper of Morrey [23] (see also [14, 24] and Chapter 12 of [11]). Its proof involves
the mapping (x, y) 7→ (ux,−uy), which turns out to be K-quasiregular. Conversely,
if a function u ∈ W 2,2

loc (Ω) is such that (x, y) 7→ (ux,−uy) is K-quasiregular, then
one can find a, b, c ∈ L∞(Ω) such that (6.1) and (6.2) hold [21]. (Note that a
K-quasiregular mapping in the sense of [11, 21] is (K +

√
K2 − 1)-quasiregular

according to the definition used in the present paper).
Therefore, Theorem 1.1 can be interpreted in terms of uniformly elliptic equa-

tions as follows.

Corollary 6.1. Suppose that a function u ∈ W 2,2
loc (Ω) solves equation (6.1)

whose coefficients satisfy (6.2). Then u ∈ c1,1/Kloc (Ω).

By virtue of Astala’s theorem [4, 1.6] the assumption u ∈ W 2,2
loc (Ω) in Corol-

lary 6.1 can be replaced with u ∈ W 2,q
loc (Ω), q > 2K/(K + 1). (Actually, q can

be taken equal to 2K/(K + 1), since Petermichl and Volberg [25] have proved the
borderline regularity result for Beltrami operators that was conjectured in [5].)
By [4, 1.2] we then have u ∈W 2,p

loc (Ω) for any p < 2K/(K − 1). It it plausible that
the second derivatives of functions considered in Corollary 6.1 possess even higher
degree of integrability. Indeed, under the additional assumption of homogeneity we
have u ∈W 2,p

loc (C) for all p < 2/(1− βK) by Theorem 5.1.
Example 4.1 shows that the exponent 1/K in Corollary 6.1 cannot be replaced

with αK . This negative result also follows from Theorem 3.1 in [8] which implies
that the function u in (4.3) is a strong solution of equation (6.1) with the coefficient
matrix

AK =

1 + (K − 1)
x2

x2 + y2
(K − 1)

xy

x2 + y2

(K − 1)
xy

x2 + y2
1 + (K − 1)

y2

x2 + y2

 .

Note that the eigenvalues of AK are K and 1, hence their ratio is equal to K for
all (x, y) 6= (0, 0). At the same time, Example 4.1 and Theorem 3 in [21] show that
u also satisfies (6.1) with a different coefficients matrix, namely

BK =
(

1− Reµ Imµ
Imµ 1 + Reµ

)
, µ =

∂f/∂z̄

∂f/∂z
,

where f is defined by (4.2). It is easy to see that the ratio of the eigenvalues of
BK is equal to (1 + |µ|)/(1− |µ|). By (4.5)–(4.6) this ratio is bounded by K and is
strictly less than K unless xy = 0.

D’Onofrio and Greco [8] proved that every strong solution of (6.1) with the
coefficient matrix AK is locally in C1,αK , where αK is defined by (4.1). This
result supports Conjecture 4.3 which says that the same conclusion should hold
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whenever the coefficient matrix of (6.1) satisfies (6.2). The proof in [8] is based
on the analysis of homogeneous solutions of (6.1). In this regard we observe that
by Theorem 5.1 every homogeneous solution of (6.1) with an arbitrary coefficient
matrix satisfying (6.2) belongs to C1,βK

loc (R2), the result being close to the best
possible.

Finally, a remark on elliptic equations in divergence form

(6.3) (a(x, y)ux)x + (b(x, y)uy)x + (b(x, y)ux)y + (c(x, y)uy)y = 0,

where a, b and c are as above. Piccinini and Spagnolo [26] proved that any weak

(W 1,2
loc ) solution of (6.3) belongs to C

0,1/
√
K

loc (Ω). The Hölder exponent 1/
√
K is

sharp (see [12] for more on the question of sharpness). Since αK < 1/
√
K by

Remark 4.2, a strong solution of (6.1) does not necessarily belong to C1,1/
√
K

loc (Ω),
in contrast with the theorem of Piccinini and Spagnolo.

7. Concluding remarks

We would like to thank Albert Baernstein, Luigi D’Onofrio, Tadeusz Iwaniec,
Juan Manfredi and Carlo Sbordone for helpful suggestions and discussions.

Since this paper was submitted, a counterexample to Conjecture 4.3 has been
found [6]. On the other hand, it has been confirmed [6] that for every K > 1 all
K-quasiregular gradient mappings are locally Hölder continuous with an exponent
strictly greater than 1/K.
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