Your name: _____

Out of the **seven** problems, do any **five** (worth 10 points each). You may use your textbook and notes, but you should work individually.

Due at 4:30pm Wednesday, May 11.

1. Define $f: [0,1] \to R$ as follows: f(0) = 0, and for $x \neq 0$ set $f(x) = (-1)^{\lfloor 1/x \rfloor}$ where $\lfloor 1/x \rfloor$ is the greatest integer than does not exceed 1/x.

Prove that $f \in \mathscr{R}$, that is, f is integrable with respect to dx.

2. Let $E \subset \mathbb{R}^k$ be a set such that for any $p, q \in E$ there exists a rectifiable curve $\gamma : [a, b] \to E$ such that $\gamma(a) = p$ and $\gamma(b) = q$. (Here [a, b] can be any closed interval on the real line.) Define

$$d(p,q) = \inf \{ \Lambda(\gamma) \colon \gamma \text{ is as above} \},\$$

where $\Lambda(\gamma)$ is the length of γ . Prove that d is a metric on the set E.

3. Give an example of a sequence of continuous functions $f_n: [0,1] \to [0,\infty)$ which has the following three properties: (i) $f_n \to 0$ pointwise; (ii) $\int_0^1 f_n(x) dx \to \infty$; (iii) $\int_0^1 x f_n(x) dx \to 0$.

4. Suppose that $f: [-1,1] \to \mathbb{R}$ is a differentiable function. Prove that for every $\epsilon > 0$ there exists a polynomial P such that $|f(x) - P(x)| \leq \epsilon |x|$ for all $x \in [-1,1]$.

5. For $x \in \mathbb{R}$ define $f(x) = \sum_{n=1}^{\infty} n^{-3} \sin nx$. Prove that there exists a constant L such that $|f(x) - f(y)| \leq L|x - y|$ for all $x, y \in \mathbb{R}$.

6. Let $h: \mathbb{R} \to \mathbb{R}$ be a continuous function such that h(0) = 0. Define the function $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \frac{xy^2h(x+y)}{x^2+y^2} \quad \text{if } (x,y) \neq (0,0); \quad f(0,0) = 0.$$

Prove that f is differentiable at (0,0).

7. Let $h: \mathbb{R} \to (0, \infty)$ be a continuously differentiable function. Define the mapping $f: \mathbb{R}^2 \to \mathbb{R}^2$ as follows: f(x, y) = (u, v) where

$$u = e^{2x}h(y)\sin y;$$
 $v = e^{2x}h(y)\cos y$

Prove that the image of any open set $U \subset \mathbb{R}^2$ under f is also an open set in \mathbb{R}^2 .