Math 602 Final Exam ($05 / 11 / 11$). Max total score 50.

Your name:
Out of the seven problems, do any five (worth 10 points each). You may use your textbook and notes, but you should work individually.
Due at 4:30pm Wednesday, May 11.

1. Define $f:[0,1] \rightarrow R$ as follows: $f(0)=0$, and for $x \neq 0$ set $f(x)=(-1)^{\lfloor 1 / x\rfloor}$ where $\lfloor 1 / x\rfloor$ is the greatest integer than does not exceed $1 / x$.
Prove that $f \in \mathscr{R}$, that is, f is integrable with respect to $d x$.
2. Let $E \subset \mathbb{R}^{k}$ be a set such that for any $p, q \in E$ there exists a rectifiable curve $\gamma:[a, b] \rightarrow E$ such that $\gamma(a)=p$ and $\gamma(b)=q$. (Here $[a, b]$ can be any closed interval on the real line.) Define

$$
d(p, q)=\inf \{\Lambda(\gamma): \gamma \text { is as above }\}
$$

where $\Lambda(\gamma)$ is the length of γ. Prove that d is a metric on the set E.
3. Give an example of a sequence of continuous functions $f_{n}:[0,1] \rightarrow[0, \infty)$ which has the following three properties: (i) $f_{n} \rightarrow 0$ pointwise; (ii) $\int_{0}^{1} f_{n}(x) d x \rightarrow \infty$; (iii) $\int_{0}^{1} x f_{n}(x) d x \rightarrow 0$.
4. Suppose that $f:[-1,1] \rightarrow \mathbb{R}$ is a differentiable function. Prove that for every $\epsilon>0$ there exists a polynomial P such that $|f(x)-P(x)| \leqslant \epsilon|x|$ for all $x \in[-1,1]$.
5. For $x \in \mathbb{R}$ define $f(x)=\sum_{n=1}^{\infty} n^{-3} \sin n x$. Prove that there exists a constant L such that $|f(x)-f(y)| \leqslant L|x-y|$ for all $x, y \in \mathbb{R}$.
6. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $h(0)=0$. Define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)=\frac{x y^{2} h(x+y)}{x^{2}+y^{2}} \quad \text { if }(x, y) \neq(0,0) ; \quad f(0,0)=0
$$

Prove that f is differentiable at $(0,0)$.
7. Let $h: \mathbb{R} \rightarrow(0, \infty)$ be a continuously differentiable function. Define the mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ as follows: $f(x, y)=(u, v)$ where

$$
u=e^{2 x} h(y) \sin y ; \quad v=e^{2 x} h(y) \cos y
$$

Prove that the image of any open set $U \subset \mathbb{R}^{2}$ under f is also an open set in \mathbb{R}^{2}.

