MATH 602 EXAM 3 (04/05/11). Solutions.

1. Suppose that $f: [0,1] \to \mathbb{R}$ and $g: [0,1] \to \mathbb{R}$ are continuous functions such that f(x) < g(x) for all $x \in [0,1]$. Prove that there exists a polynomial P such that f(x) < P(x) < g(x) for all $x \in [0,1]$.

Proof. Since g - f is a positive continuous function on compact set [0, 1], its infimum, denoted by ϵ , is positive. Let $h = \frac{f+g}{2}$: this is also a continuous function. By the Weierstrass approximation theorem, there exists a polynomial P with real coefficients such that $|P(x) - h(x)| < \frac{\epsilon}{2}$ for all $x \in [0, 1]$. It follows from the triangle inequality that

$$P(x) < h(x) + \frac{\epsilon}{2} \leq \frac{f(x) + g(x)}{2} + \frac{g(x) - f(x)}{2} = g(x)$$
$$P(x) > h(x) - \frac{\epsilon}{2} \geq \frac{f(x) + g(x)}{2} - \frac{g(x) - f(x)}{2} = f(x)$$

2. Let f(x) = 1 if $x \in [0, \pi]$ and f(x) = 0 if $x \in [-\pi, 0]$. Compute the Fourier series of f and show that its sum $\lim_{N \to \infty} \sum_{n=-N}^{N} c_n e^{inx}$ is equal to 1/2 at x = 0.

Proof. For $n \neq 0$,

$$c_n = \frac{1}{2\pi} \int_0^{\pi} e^{-inx} \, dx = \frac{1}{2\pi} \frac{e^{-in\pi} - 1}{-in} = \frac{i}{2\pi n} ((-1)^n - 1)$$

which is $-i/(\pi n)$ when n is odd and 0 when n is even. For n = 0 we get $c_0 = \frac{1}{2\pi} \int_0^{\pi} 1 \, dx = 1/2$. At x = 0, the partial sums of the Fourier series are

$$\frac{1}{2} + \sum_{n=-N}^{N} c_n = \frac{1}{2}$$

because $c_{-n} = -c_n$ for all $n \neq 0$. Hence the limit as $N \to \infty$ is also 1/2.

3. Suppose that $f: [-\pi, \pi] \to \mathbb{R}$ is a differentiable function such that f' is continuous on $x \in [-\pi, \pi]$. Let $c_n, n \in \mathbb{Z}$, be the Fourier coefficients of f. Prove that there exists a constant M such that $|c_n| \leq M/|n|$ for all $n \in \mathbb{Z} \setminus \{0\}$.

Proof. Evaluate c_n using integration by parts:

$$2\pi c_n = \int_{-\pi}^{\pi} f(x) e^{-inx} dx = f(\pi) \frac{e^{-in\pi}}{-in} - f(-\pi) \frac{e^{in\pi}}{-in} - \int_{-\pi}^{\pi} f'(x) \frac{e^{-inx}}{-in} dx$$
$$= \frac{f(\pi) - f(-\pi)}{-in} + \frac{1}{in} \int_{-\pi}^{\pi} f'(x) \frac{e^{-inx}}{-in} dx$$

By the triangle inequality,

$$2\pi|c_n| \leqslant \frac{2}{n} \sup |f| + \frac{2\pi}{n} \sup |f'|.$$

We can take $M = \frac{1}{\pi} \sup |f| + \sup |f'|$.

Remark. If $f(\pi) = f(-\pi)$, then the result can be improved to $nc_n \to 0$ by the Riemann-Lebesgue lemma applied to f'.

4. Consider the power series $\sum_{n=0}^{\infty} c_n x^n$ in which the coefficients $c_n \in \mathbb{R}$ satisfy $c_{n+2} = c_n$ for all n. Prove that:

- (a) The series converges for $x \in (-1, 1)$.
- (b) Its sum is a rational function of x; that is, the ratio of two polynomials.

Proof. (a) The sequence $\{c_n\}$ is bounded by $M = \max\{|c_0|, |c_1|\}$. For $x \in (-1, 1)$ the series $\sum c_n x^n$ converges by comparison to $\sum M|x|^n$, where the latter series is geometric with ratio |x| < 1. (b) Consider a partial sum of the series by $(1 - x^2)$ which runs up to 2N (just for convenience):

 $\sum_{n=0}^{2N} c_n x^n = c_0 \sum_{k=0}^{N} x^{2k} + c_1 \sum_{k=1}^{N} x^{2k-1} = c_0 \frac{1 - x^{2N+2}}{1 - x^2} + c_1 \frac{x - x^{2N+1}}{1 - x^2}$

The limit as $N \to \infty$ is $\frac{c_0}{1-x^2} + \frac{c_1x}{1-x^2} = \frac{c_0+c_1x}{1-x^2}$. Since this limit is equal to the sum of the series, f(x) is a rational function.

5. For $x \in \mathbb{R}$ define $f(x) = \sum_{n=1}^{\infty} 2^{-n} \cos nx$. Prove that the integral $\int_{-\pi}^{\pi} f(x)^2 dx$ exists and find its value.

Proof. The series that defines f converges uniformly by the Weierstrass test: $\sum 2^{-n} < \infty$. Therefore, the integral exists and is equal to the limit of integrals of f_N^2 where f_N is a partial sum of the series. Using the identity $\cos nx = \frac{e^{inx} + e^{-inx}}{2}$, rearrange f_N as

$$f_N(x) = \frac{1}{2} \sum_{0 < |n| \leq N} 2^{-|n|} e^{inx}$$

Hence

$$f_N(x)^2 = \frac{1}{4} \sum_{0 < |n|, |m| \le N} 2^{-|n| - |m|} e^{i(n+m)x}$$

The terms with $n + m \neq 0$ integrate to zero over $[-\pi, \pi]$, since e^{ikx} has antiderivative $(ik)^{-1}e^{ikx}$, which is 2π -periodic. The remaining terms are identically equal to $2^{-2|n|}$.

N 7

$$\int_{-\pi}^{\pi} f_N(x)^2 \, dx = \frac{1}{4} \sum_{0 < |n| \le N} \int_{-\pi}^{\pi} 2^{-2|n|} \, dx = \frac{\pi}{2} \sum_{0 < |n| \le N} 2^{-2|n|} = \pi \sum_{n=1}^{N} 2^{-2n}.$$

Let $N \to \infty$ and compute the sum of the geometric series:

$$\int_{-\pi}^{\pi} f(x)^2 \, dx = \pi \sum_{n=1}^{\infty} 2^{-2n} = \pi \frac{1/4}{1 - 1/4} = \frac{\pi}{3}$$

6. "The one-sided limit $\lim_{x\to 0+} x^p \log x$ exists for every p > 0." True: Apply L'H to $\frac{\log x}{x^{-p}}$. 7. "If P is a polynomial of degree $d \ge 2$ with complex coefficients, then there exists $z \in \mathbb{C}$ such that P(z) = z." True: apply FTA to P(z) - z.