Math 602 Exam 3 ($04 / 05 / 11$). Solutions.

1. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$ are continuous functions such that $f(x)<g(x)$ for all $x \in[0,1]$. Prove that there exists a polynomial P such that $f(x)<P(x)<g(x)$ for all $x \in[0,1]$.

Proof. Since $g-f$ is a positive continuous function on compact set $[0,1]$, its infimum, denoted by ϵ, is positive. Let $h=\frac{f+g}{2}$: this is also a continuous function. By the Weierstrass approximation theorem, there exists a polynomial P with real coefficients such that $|P(x)-h(x)|<\frac{\epsilon}{2}$ for all $x \in[0,1]$. It follows from the triangle inequality that

$$
\begin{aligned}
& P(x)<h(x)+\frac{\epsilon}{2} \leqslant \frac{f(x)+g(x)}{2}+\frac{g(x)-f(x)}{2}=g(x) \\
& P(x)>h(x)-\frac{\epsilon}{2} \geqslant \frac{f(x)+g(x)}{2}-\frac{g(x)-f(x)}{2}=f(x)
\end{aligned}
$$

2. Let $f(x)=1$ if $x \in[0, \pi]$ and $f(x)=0$ if $x \in[-\pi, 0]$. Compute the Fourier series of f and show that its sum $\lim _{N \rightarrow \infty} \sum_{n=-N}^{N} c_{n} e^{i n x}$ is equal to $1 / 2$ at $x=0$.

Proof. For $n \neq 0$,

$$
c_{n}=\frac{1}{2 \pi} \int_{0}^{\pi} e^{-i n x} d x=\frac{1}{2 \pi} \frac{e^{-i n \pi}-1}{-i n}=\frac{i}{2 \pi n}\left((-1)^{n}-1\right)
$$

which is $-i /(\pi n)$ when n is odd and 0 when n is even. For $n=0$ we get $c_{0}=\frac{1}{2 \pi} \int_{0}^{\pi} 1 d x=1 / 2$.
At $x=0$, the partial sums of the Fourier series are

$$
\frac{1}{2}+\sum_{n=-N}^{N} c_{n}=\frac{1}{2}
$$

because $c_{-n}=-c_{n}$ for all $n \neq 0$. Hence the limit as $N \rightarrow \infty$ is also $1 / 2$.
3. Suppose that $f:[-\pi, \pi] \rightarrow \mathbb{R}$ is a differentiable function such that f^{\prime} is continuous on $x \in[-\pi, \pi]$. Let $c_{n}, n \in \mathbb{Z}$, be the Fourier coefficients of f. Prove that there exists a constant M such that $\left|c_{n}\right| \leqslant M /|n|$ for all $n \in \mathbb{Z} \backslash\{0\}$.

Proof. Evaluate c_{n} using integration by parts:

$$
\begin{aligned}
2 \pi c_{n}=\int_{-\pi}^{\pi} f(x) e^{-i n x} d x=f(\pi) & \frac{e^{-i n \pi}}{-i n}-f(-\pi) \frac{e^{i n \pi}}{-i n}-\int_{-\pi}^{\pi} f^{\prime}(x) \frac{e^{-i n x}}{-i n} d x \\
& =\frac{f(\pi)-f(-\pi)}{-i n}+\frac{1}{i n} \int_{-\pi}^{\pi} f^{\prime}(x) \frac{e^{-i n x}}{} d x
\end{aligned}
$$

By the triangle inequality,

$$
2 \pi\left|c_{n}\right| \leqslant \frac{2}{n} \sup |f|+\frac{2 \pi}{n} \sup \left|f^{\prime}\right|
$$

We can take $M=\frac{1}{\pi} \sup |f|+\sup \left|f^{\prime}\right|$.
Remark. If $f(\pi)=f(-\pi)$, then the result can be improved to $n c_{n} \rightarrow 0$ by the Riemann-Lebesgue lemma applied to f^{\prime}.
4. Consider the power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ in which the coefficients $c_{n} \in \mathbb{R}$ satisfy $c_{n+2}=c_{n}$ for all n. Prove that:
(a) The series converges for $x \in(-1,1)$.
(b) Its sum is a rational function of x; that is, the ratio of two polynomials.

Proof. (a) The sequence $\left\{c_{n}\right\}$ is bounded by $M=\max \left\{\left|c_{0}\right|,\left|c_{1}\right|\right\}$. For $x \in(-1,1)$ the series $\sum c_{n} x^{n}$ converges by comparison to $\sum M|x|^{n}$, where the latter series is geometric with ratio $|x|<1$.
(b) Consider a partial sum of the series by $\left(1-x^{2}\right)$ which runs up to $2 N$ (just for convenience):

$$
\sum_{n=0}^{2 N} c_{n} x^{n}=c_{0} \sum_{k=0}^{N} x^{2 k}+c_{1} \sum_{k=1}^{N} x^{2 k-1}=c_{0} \frac{1-x^{2 N+2}}{1-x^{2}}+c_{1} \frac{x-x^{2 N+1}}{1-x^{2}}
$$

The limit as $N \rightarrow \infty$ is $\frac{c_{0}}{1-x^{2}}+\frac{c_{1} x}{1-x^{2}}=\frac{c_{0}+c_{1} x}{1-x^{2}}$. Since this limit is equal to the sum of the series, $f(x)$ is a rational function.
5. For $x \in \mathbb{R}$ define $f(x)=\sum_{n=1}^{\infty} 2^{-n} \cos n x$. Prove that the integral $\int_{-\pi}^{\pi} f(x)^{2} d x$ exists and find its value.

Proof. The series that defines f converges uniformly by the Weierstrass test: $\sum 2^{-n}<\infty$. Therefore, the integral exists and is equal to the limit of integrals of f_{N}^{2} where f_{N} is a partial sum of the series. Using the identity $\cos n x=\frac{e^{i n x}+e^{-i n x}}{2}$, rearrange f_{N} as

$$
f_{N}(x)=\frac{1}{2} \sum_{0<|n| \leqslant N} 2^{-|n|} e^{i n x}
$$

Hence

$$
f_{N}(x)^{2}=\frac{1}{4} \sum_{0<|n|,|m| \leqslant N} 2^{-|n|-|m|} e^{i(n+m) x}
$$

The terms with $n+m \neq 0$ integrate to zero over $[-\pi, \pi]$, since $e^{i k x}$ has antiderivative $(i k)^{-1} e^{i k x}$, which is 2π-periodic. The remaining terms are identically equal to $2^{-2|n|}$.

$$
\int_{-\pi}^{\pi} f_{N}(x)^{2} d x=\frac{1}{4} \sum_{0<|n| \leqslant N} \int_{-\pi}^{\pi} 2^{-2|n|} d x=\frac{\pi}{2} \sum_{0<|n| \leqslant N} 2^{-2|n|}=\pi \sum_{n=1}^{N} 2^{-2 n}
$$

Let $N \rightarrow \infty$ and compute the sum of the geometric series:

$$
\int_{-\pi}^{\pi} f(x)^{2} d x=\pi \sum_{n=1}^{\infty} 2^{-2 n}=\pi \frac{1 / 4}{1-1 / 4}=\frac{\pi}{3}
$$

6. "The one-sided limit $\lim _{x \rightarrow 0+} x^{p} \log x$ exists for every $p>0$." True: Apply L'H to $\frac{\log x}{x^{-p}}$.
7. "If P is a polynomial of degree $d \geqslant 2$ with complex coefficients, then there exists $z \in \mathbb{C}$ such that $P(z)=z$. . True: apply FTA to $P(z)-z$.
