
Math 602 Exam 3 (04/05/11). Solutions.

1. Suppose that f : [0, 1]→ R and g : [0, 1]→ R are continuous functions such that f(x) < g(x) for all
x ∈ [0, 1]. Prove that there exists a polynomial P such that f(x) < P (x) < g(x) for all x ∈ [0, 1].

Proof. Since g− f is a positive continuous function on compact set [0, 1], its infimum, denoted by ε, is

positive. Let h =
f + g

2
: this is also a continuous function. By the Weierstrass approximation theorem,

there exists a polynomial P with real coefficients such that |P (x)−h(x)| < ε

2
for all x ∈ [0, 1]. It follows

from the triangle inequality that

P (x) < h(x) +
ε

2
6
f(x) + g(x)

2
+
g(x)− f(x)

2
= g(x)

P (x) > h(x)− ε

2
>
f(x) + g(x)

2
− g(x)− f(x)

2
= f(x)

2. Let f(x) = 1 if x ∈ [0, π] and f(x) = 0 if x ∈ [−π, 0]. Compute the Fourier series of f and show that

its sum lim
N→∞

N∑
n=−N

cne
inx is equal to 1/2 at x = 0.

Proof. For n 6= 0,

cn =
1

2π

∫ π

0
e−inx dx =

1
2π

e−inπ − 1
−in

=
i

2πn
((−1)n − 1)

which is −i/(πn) when n is odd and 0 when n is even. For n = 0 we get c0 =
1

2π

∫ π

0
1 dx = 1/2.

At x = 0, the partial sums of the Fourier series are

1
2

+
N∑

n=−N
cn =

1
2

because c−n = −cn for all n 6= 0. Hence the limit as N →∞ is also 1/2.

3. Suppose that f : [−π, π]→ R is a differentiable function such that f ′ is continuous on x ∈ [−π, π]. Let
cn, n ∈ Z, be the Fourier coefficients of f . Prove that there exists a constant M such that |cn| 6 M/|n|
for all n ∈ Z \ {0}.

Proof. Evaluate cn using integration by parts:

2πcn =
∫ π

−π
f(x)e−inx dx = f(π)

e−inπ

−in
− f(−π)

einπ

−in
−

∫ π

−π
f ′(x)

e−inx

−in
dx

=
f(π)− f(−π)

−in
+

1
in

∫ π

−π
f ′(x)

e−inx
dx

By the triangle inequality,

2π|cn| 6
2
n

sup |f |+ 2π
n

sup |f ′|.

We can take M = 1
π sup |f |+ sup |f ′|.

Remark. If f(π) = f(−π), then the result can be improved to ncn → 0 by the Riemann-Lebesgue lemma
applied to f ′.



4. Consider the power series
∑∞

n=0 cnx
n in which the coefficients cn ∈ R satisfy cn+2 = cn for all n.

Prove that:
(a) The series converges for x ∈ (−1, 1).
(b) Its sum is a rational function of x; that is, the ratio of two polynomials.

Proof. (a) The sequence {cn} is bounded by M = max{|c0|, |c1|}. For x ∈ (−1, 1) the series
∑
cnx

n

converges by comparison to
∑
M |x|n, where the latter series is geometric with ratio |x| < 1.

(b) Consider a partial sum of the series by (1− x2) which runs up to 2N (just for convenience):
2N∑
n=0

cnx
n = c0

N∑
k=0

x2k + c1

N∑
k=1

x2k−1 = c0
1− x2N+2

1− x2
+ c1

x− x2N+1

1− x2

The limit as N →∞ is
c0

1− x2
+

c1x

1− x2
=
c0 + c1x

1− x2
. Since this limit is equal to the sum of the series,

f(x) is a rational function.

5. For x ∈ R define f(x) =
∞∑
n=1

2−n cosnx. Prove that the integral
∫ π

−π
f(x)2 dx exists and find its

value.

Proof. The series that defines f converges uniformly by the Weierstrass test:
∑

2−n <∞. Therefore,
the integral exists and is equal to the limit of integrals of f2

N where fN is a partial sum of the series.

Using the identity cosnx =
einx + e−inx

2
, rearrange fN as

fN (x) =
1
2

∑
0<|n|6N

2−|n|einx

Hence
fN (x)2 =

1
4

∑
0<|n|,|m|6N

2−|n|−|m|ei(n+m)x

The terms with n+m 6= 0 integrate to zero over [−π, π], since eikx has antiderivative (ik)−1eikx, which
is 2π-periodic. The remaining terms are identically equal to 2−2|n|.∫ π

−π
fN (x)2 dx =

1
4

∑
0<|n|6N

∫ π

−π
2−2|n| dx =

π

2

∑
0<|n|6N

2−2|n| = π
N∑
n=1

2−2n.

Let N →∞ and compute the sum of the geometric series:∫ π

−π
f(x)2 dx = π

∞∑
n=1

2−2n = π
1/4

1− 1/4
=
π

3

6. “The one-sided limit lim
x→0+

xp log x exists for every p > 0.” True: Apply L’H to
log x
x−p

.

7. “If P is a polynomial of degree d > 2 with complex coefficients, then there exists z ∈ C such that
P (z) = z.” True: apply FTA to P (z)− z.


