MATH 602 ExAaM 3 (04/05/11). SOLUTIONS.

1. Suppose that f:[0,1] — R and g: [0,1] — R are continuous functions such that f(z) < g(z) for all
x € [0,1]. Prove that there exists a polynomial P such that f(z) < P(z) < g(x) for all z € [0,1].

Proof. Since g — f is a positive continuous function on compact set [0, 1], its infimum, denoted by e, is

positive. Let h = %: this is also a continuous function. By the Weierstrass approximation theorem,

there exists a polynomial P with real coefficients such that |P(z) —h(x)| < % for all z € [0, 1]. It follows
from the triangle inequality that
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2. Let f(x) =1if x € [0,7] and f(x) =0 if € [-m,0]. Compute the Fourier series of f and show that
N
its sum lim Z cn€™ is equal to 1/2 at = 0.
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which is —i/(7n) when n is odd and 0 when n is even. For n = 0 we get ¢g = 2/ ldx =1/2.
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At z = 0, the partial sums of the Fourier series are
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because c¢_,, = —¢,, for all n # 0. Hence the limit as N — oo is also 1/2.

3. Suppose that f: [-7, 7] — R is a differentiable function such that f’ is continuous on x € [—m, 7]. Let
Cn, 1 € Z, be the Fourier coefficients of f. Prove that there exists a constant M such that |¢,,| < M/|n|
for all n € Z \ {0}.

Proof. Evaluate ¢, using integration by parts:
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2me, = 3 f(x)e_im dx = f(r) 7l,m — f(—m) o —/_ f'() inx dx
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By the triangle inequality,
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We can take M = L sup|f|+sup|f’|.

Remark. If f(w) = f(—m), then the result can be improved to nc, — 0 by the Riemann-Lebesgue lemma

applied to f'.



4. Consider the power series ZZO:O cpx™ in which the coefficients ¢, € R satisfy c,10 = ¢, for all n.
Prove that:
(a) The series converges for z € (—1,1).

(b) Its sum is a rational function of x; that is, the ratio of two polynomials.

Proof. (a) The sequence {c,} is bounded by M = max{|co|, |c1|}. For = € (—1,1) the series ) c,a"
converges by comparison to Y M |x|™, where the latter series is geometric with ratio |z| < 1.

(b) Consider a partial sum of the series by (1 — x?) which runs up to 2N (just for convenience):
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The limit as N — oo is 0 4 2 T Gince this limit is equal to the sum of the series,
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f(x) is a rational function.
™
5. For z € R define f(x Z 27" cosnx. Prove that the integral f(z)? dz exists and find its
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value.

Proof. The series that defines f converges uniformly by the Weierstrass test: > 27" < co. Therefore,

the integral exists and is equal to the limit of integrals of f% where fx is a partial sum of the series.
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Using the identity cosnz = , rearrange fn as
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Hence
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kT has antiderivative (ik)~'e?® which
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The terms with n 4+ m # 0 integrate to zero over [—m, 7], since e

is 2m-periodic. The remaining terms are identically equal to 2~
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Let N — oo and compute the sum of the geometric series:
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6. “The one-sided limit hr%r)1Jr 2P log x exists for every p > 0.” True: Apply L’H to

7. “If P is a polynomial of degree d > 2 with complex coefficients, then there ex1sts z € C such that
P(z) = z.” True: apply FTA to P(z) —



