YOUR NAME: _

READ THIS FIRST: Do not open the exam booklet until told to do so. Out of the first **five** problems, do any **four** (worth 10 points each). If you attempt all five problems, indicate which one is not to be graded. The exam concludes with two True/False questions worth 5 points each. You may not use the textbook or notes.

Part I: Do four out of five problems. If you attempt all five problems, indicate which one is not to be graded. Support your claims.

1. Suppose that $f: [0,1] \to \mathbb{R}$ and $g: [0,1] \to \mathbb{R}$ are continuous functions such that f(x) < g(x) for all $x \in [0,1]$. Prove that there exists a polynomial P such that f(x) < P(x) < g(x) for all $x \in [0,1]$.

2. Let f(x) = 1 if $x \in [0, \pi]$ and f(x) = 0 if $x \in [-\pi, 0)$. Compute the Fourier series of f and use it to show that $\lim_{N \to \infty} \sum_{n=-N}^{N} c_n e^{inx}$ is equal to 1/2 at x = 0.

3. Suppose that $f: [-\pi, \pi] \to \mathbb{R}$ is a differentiable function such that f' is continuous on $x \in [-\pi, \pi]$. Let $c_n, n \in \mathbb{Z}$, be the Fourier coefficients of f. Prove that there exists a constant M such that $|c_n| \leq M/|n|$ for all $n \in \mathbb{Z} \setminus \{0\}$.

4. Consider the power series $\sum_{n=0}^{\infty} c_n x^n$ in which the coefficients $c_n \in \mathbb{R}$ satisfy $c_{n+2} = c_n$ for all n. Prove that: (a) The series converges for $x \in (-1, 1)$.

(b) Its sum is a rational function of x; that is, the ratio of two polynomials.

5. For $x \in \mathbb{R}$ define $f(x) = \sum_{n=1}^{\infty} 2^{-n} \cos nx$. Prove that the integral $\int_{-\pi}^{\pi} f(x)^2 dx$ exists and find its value.

Part II: True/False questions, 5 points each. You do not need to support your claims in this part.

6. "The one-sided limit $\lim_{x\to 0+} x^p \log x$ exists for every p > 0."

True _____ *False* _____

7. "If P is a polynomial of degree $d \ge 2$ with complex coefficients, then there exists $z \in \mathbb{C}$ such that P(z) = z."

True _____ *False* _____