MATH 602 EXAM 2 SOLUTIONS.

1. Let . be an equicontinuous family of functions from R to R.

Prove that the family %, = {fog: f,g € .Z} is also equicontinuous.

Proof. Fix € > 0. By the equicontinuity of .#, there exists 6 > 0 such that for all f € % we have
|f(z) — f(y)] < € whenever |z — y| < §. Using the equicontinuity again, find ¢’ > 0 such that for all
f € .7 we have |f(z) — f(y)| < ¢ whenever |z —y| < d'.

Now let f and g be any functions from %, and suppose |z — y| < ¢, z,y € R. From the above we have

|f(g9(x)) — f(g(y))| <, as required. O

2. Give an example of a sequence of continuous functions f,: [0,1] — R which has the following three
1 1
properties: (i) f, — 0 pointwise; (ii) / | fr| dz — 05 (iii) / f2dz — oo.
0 0

Proof. Recall an example given in class to demonstrate that pointwise convergence does not imply

convergence of integrals: the sequence

n’x, 0<z<1ln
gn = max(0,n — n?x — n|) = { n2(2/n — x), Un<ax<2/n
0, 2/n < Xz g 1

converges to 0 pointwise but fol gdr = 1. Also,

1 1n 9
/ gid$=2/ nt*e?de = “n —
0 0 3

Thus, we already have (i) and (iii), but need to make the function a bit smaller to also achieve (ii).
One can try guess-and-check, but the more reliable method is to introduce a coefficient ¢, > 0 to be
chosen later: f,(z) = cpgn(z). No matter what ¢, is, (i) holds because f,(0) = 0 and for any x € (0, 1]

we have fy(x) =0 when n > 2/z. Since

1 1 2
/ |fnldz = ¢, and / frder=c-Sn
0 0 3

We need ¢, — 0 and ncfl — 00; both are achieved with ¢, = n=s. Thus, f, = n*1/3gn satisfies (i),
(ii), and (iii). O
n

bl — (=1)
3. Prove that/ —dx = E -
0o 1+ fmntl

Proof. The geometric series

1 o0
S =Y el <
n=0
converges uniformly on [0, b] for any 0 < b < 1, but it does not converge uniformly on [0,1). There are
two ways to get around this difficulty: (A) work with [0, b] and then let b — 1; (B) modify the series to

achieve uniform convergence on [0, 1].



(A) Let 0 < b < 1. Applylng the Weierstrass text to 2 ((—1)"z" on [0,b], we find that convergence

is uniform because ~ 0" < 0o. Thus, the integral of the sum is the sum of integrals:
nfO ) g

b e n
1 -1
(1) / dx:E ( )b", 0<b< 1
0 n

14z :On—i-l

As b — 1, the left side of (1) tends to fol 1—1%73 dx because

L | b1 L |
/ d:z:—/ dx:/ dr < (1-0) —
0 1+.:U 0 l—i—x b 1+x

It remains to show that

(2) lim 3 CD" i (1"

b—>1n:0n—|—1 :On—i—l

To this end, consider the function

. - (_1yln
(3) F(b)_gomb, 0<b< 1.

The series defining F' is uniformly convergent on [0, 1] by #3 in Homework 4. Thus F' is continuous on

[0,1]. In particular, %irri F(b) = F(1), which is exactly (2).

(B) Following the earlier example of 1/(1 + 22), begin with

2
(4) T =l4+l—z—a+a?+2> -3 -3+t 421 lz| <1
x
and group the terms as
2
(5) 1+x—1+2w2” (1—-xz)2, |z <1
n=0

The new series converges at x = 1 as well, and the equality (5) holds at = = 1. Moreover, each term is
nonnegative, which means that partial sums form an increasing series of functions, Since both the partial
sums and their limit are continuous on [0, 1], we conclude (by Theorem 7.13) that the convergence is

uniform on [0,1]. Hence we can integrate term by term:

2 1 2 1
6 =1 (1 - =1
(6) /0 1+ de +Z/ z)* da +Z<2n+1 2n—|—2+2n+3>

It remains to prove that the series in (6) has the expected sum. To this end, rearrange its partial sum:

N N
1 2 1 1 1 1
1 — = 2 —
+nz:%<2n+1 2n+2+2n+3> 2N+3+ §<2n+1 2n+2>

and notice that

N 2N+1
1 1 (— 1)
2 — =2
S (ot ) 2 2 %
n=0 k=0

as N — oo. O



4. For z € [0,1], let fo(x) = z and define fn(z) = fo—1(z)- (1 — fo-1(z)) forn=1,2,....
Prove that f,, — 0 uniformly on [0, 1].

Proof. Since f,, is continuous and f, = f,—1 — f2_; < fa_1, it suffices to prove pointwise convergence
to 0 (uniform convergence follows from Theorem 7.13). For any x € [0, 1] the values f,(z) are between
0 and 1, which is readily seen by induction (the product of two numbers in [0,1] lies in the same
interval). For a fixed z € [0,1], the sequence {f,(x)} is decreasing and bounded, and therefore has
a limit which we denote by L. Also, f,+1(x) = fu(z) - (1 — fu(z)) — L(1 — L) as n — oo. Since
limy, 00 frn+1 = limy 00 fn, it follows that L = L(1 — L). This is only possible when L = 0. O

5. Let € be the set of all continuous functions from [0,1] to R. Given f,g € ¥, consider the set
N(f,g) =A{z €[0,1]: f(z) # g(x)} and define

d(fjg):{o it N(f,9) = 2;

sup N(f,9) otherwise.
Show that d is a metric on %, and then prove that the metric space (¢, d) is not complete.

Proof. Properties of metric: (i) d > 0 by definition. Also, d(f,g) = 0 if and only if f(z) = g(x) for all
x > 0, in which case the continuity implies f(0) = ¢g(0) as well.
(ii) d(f,g) = d(g, f) because N(f,g) = N(g, f).
(iii) To prove d(f,h) < d(f,g) + d(g,h), take x > d(f,g) + d(g,h) and observe that f(z) = g(z) and
g(z) = h(x) by the definition of d. Hence f(z) = h(x) for all such x, which yields the desired inequality.
To prove that (€, d) is not complete, we need a Cauchy sequence in (%, d) that fails to have a limit in
the sense of (¢,d). One way to create a Cauchy sequence is to cut off the same function at different
places, for example

fal@) = min(fe,n), fa(0) = n,
is the cutoff of 1/z at level n. For m > n > N we have d(f,, fm) =1/n < /N — 0 as N — co. Thus the
sequence is Cauchy.
Suppose that there is f € € such that d(f, f,) — 0 as n — co. Being continuous on [0, 1], the function
f is bounded: say, |f| < M for some constant M. Fix a number € € (0,1) such that e < 1/M. For all
n > 1/e we have fy(e) =1/e > M > f(e). Hence d(f, fn) > €, a contradiction. O

6. “If f,: [0,1] — R is differentiable on [0, 1] for each n, and f, — f uniformly on [0,1], then f is
differentiable on [0, 1].”

False: counterexamples were constructed in Homework 4.

7. “If f,:[0,1] — R is Riemann integrable on [0, 1] for each n, and f, — f uniformly on [0, 1], then f
is Riemann integrable on [0, 1].”
True, by Theorem 7.16.



