Math 602 Exam 2 solutions.

1. Let \mathscr{F} be an equicontinuous family of functions from \mathbb{R} to \mathbb{R}.

Prove that the family $\mathscr{F}_{1}=\{f \circ g: f, g \in \mathscr{F}\}$ is also equicontinuous.
Proof. Fix $\epsilon>0$. By the equicontinuity of \mathscr{F}, there exists $\delta>0$ such that for all $f \in \mathscr{F}$ we have $|f(x)-f(y)|<\epsilon$ whenever $|x-y|<\delta$. Using the equicontinuity again, find $\delta^{\prime}>0$ such that for all $f \in \mathscr{F}$ we have $|f(x)-f(y)|<\delta$ whenever $|x-y|<\delta^{\prime}$.
Now let f and g be any functions from \mathscr{F}, and suppose $|x-y|<\delta^{\prime}, x, y \in \mathbb{R}$. From the above we have $|f(g(x))-f(g(y))|<\epsilon$, as required.
2. Give an example of a sequence of continuous functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ which has the following three properties: (i) $f_{n} \rightarrow 0$ pointwise; (ii) $\int_{0}^{1}\left|f_{n}\right| d x \rightarrow 0$; (iii) $\int_{0}^{1} f_{n}^{2} d x \rightarrow \infty$.
Proof. Recall an example given in class to demonstrate that pointwise convergence does not imply convergence of integrals: the sequence

$$
g_{n}=\max \left(0, n-n^{2}|x-1 / n|\right)= \begin{cases}n^{2} x, & 0 \leqslant x \leqslant 1 / n \\ n^{2}(2 / n-x), & 1 / n \leqslant x \leqslant 2 / n \\ 0, & 2 / n \leqslant x \leqslant 1\end{cases}
$$

converges to 0 pointwise but $\int_{0}^{1} g d x=1$. Also,

$$
\int_{0}^{1} g_{n}^{2} d x=2 \int_{0}^{1 / n} n^{4} x^{2} d x=\frac{2}{3} n \rightarrow \infty
$$

Thus, we already have (i) and (iii), but need to make the function a bit smaller to also achieve (ii).
One can try guess-and-check, but the more reliable method is to introduce a coefficient $c_{n}>0$ to be chosen later: $f_{n}(x)=c_{n} g_{n}(x)$. No matter what c_{n} is, (i) holds because $f_{n}(0)=0$ and for any $x \in(0,1]$ we have $f_{n}(x)=0$ when $n>2 / x$. Since

$$
\int_{0}^{1}\left|f_{n}\right| d x=c_{n} \quad \text { and } \quad \int_{0}^{1} f_{n}^{2} d x=c_{n}^{2} \cdot \frac{2}{3} n
$$

We need $c_{n} \rightarrow 0$ and $n c_{n}^{2} \rightarrow \infty$; both are achieved with $c_{n}=n^{-1 / 3}$. Thus, $f_{n}=n^{-1 / 3} g_{n}$ satisfies (i), (ii), and (iii).
3. Prove that $\int_{0}^{1} \frac{1}{1+x} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}$.

Proof. The geometric series

$$
\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n}, \quad|x|<1,
$$

converges uniformly on $[0, b]$ for any $0<b<1$, but it does not converge uniformly on $[0,1)$. There are two ways to get around this difficulty: (A) work with $[0, b]$ and then let $b \rightarrow 1$; (B) modify the series to achieve uniform convergence on $[0,1]$.
(A) Let $0<b<1$. Applying the Weierstrass text to $\sum_{n=0}^{\infty}(-1)^{n} x^{n}$ on $[0, b]$, we find that convergence is uniform because $\sum_{n=0}^{\infty} b^{n}<\infty$. Thus, the integral of the sum is the sum of integrals:

$$
\begin{equation*}
\int_{0}^{b} \frac{1}{1+x} d x=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} b^{n}, \quad 0<b<1 \tag{1}
\end{equation*}
$$

As $b \rightarrow 1$, the left side of (1) tends to $\int_{0}^{1} \frac{1}{1+x} d x$ because

$$
\left|\int_{0}^{1} \frac{1}{1+x} d x-\int_{0}^{b} \frac{1}{1+x} d x\right|=\int_{b}^{1} \frac{1}{1+x} d x \leqslant(1-b) \rightarrow 0 .
$$

It remains to show that

$$
\begin{equation*}
\lim _{b \rightarrow 1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} b^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} \tag{2}
\end{equation*}
$$

To this end, consider the function

$$
\begin{equation*}
F(b)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} b^{n}, \quad 0 \leqslant b \leqslant 1 \tag{3}
\end{equation*}
$$

The series defining F is uniformly convergent on $[0,1]$ by $\# 3$ in Homework 4. Thus F is continuous on $[0,1]$. In particular, $\lim _{b \rightarrow 1} F(b)=F(1)$, which is exactly (2).
(B) Following the earlier example of $1 /\left(1+x^{2}\right)$, begin with

$$
\begin{equation*}
\frac{2}{1+x}=1+1-x-x+x^{2}+x^{2}-x^{3}-x^{3}+x^{4}+x^{4}-\ldots, \quad|x|<1 \tag{4}
\end{equation*}
$$

and group the terms as

$$
\begin{equation*}
\frac{2}{1+x}=1+\sum_{n=0}^{\infty} x^{2 n}(1-x)^{2}, \quad|x|<1 \tag{5}
\end{equation*}
$$

The new series converges at $x=1$ as well, and the equality (5) holds at $x=1$. Moreover, each term is nonnegative, which means that partial sums form an increasing series of functions, Since both the partial sums and their limit are continuous on $[0,1]$, we conclude (by Theorem 7.13) that the convergence is uniform on $[0,1]$. Hence we can integrate term by term:

$$
\begin{equation*}
\int_{0}^{1} \frac{2}{1+x} d x=1+\sum_{n=0}^{\infty} \int_{0}^{1} x^{2 n}(1-x)^{2} d x=1+\sum_{n=0}^{\infty}\left(\frac{1}{2 n+1}-\frac{2}{2 n+2}+\frac{1}{2 n+3}\right) . \tag{6}
\end{equation*}
$$

It remains to prove that the series in (6) has the expected sum. To this end, rearrange its partial sum:

$$
1+\sum_{n=0}^{N}\left(\frac{1}{2 n+1}-\frac{2}{2 n+2}+\frac{1}{2 n+3}\right)=\frac{1}{2 N+3}+2 \sum_{n=0}^{N}\left(\frac{1}{2 n+1}-\frac{1}{2 n+2}\right)
$$

and notice that

$$
2 \sum_{n=0}^{N}\left(\frac{1}{2 n+1}-\frac{1}{2 n+2}\right)=2 \sum_{k=0}^{2 N+1} \frac{(-1)^{k}}{k+1} \rightarrow 2 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+1}
$$

as $N \rightarrow \infty$.
4. For $x \in[0,1]$, let $f_{0}(x)=x$ and define $f_{n}(x)=f_{n-1}(x) \cdot\left(1-f_{n-1}(x)\right)$ for $n=1,2, \ldots$.

Prove that $f_{n} \rightarrow 0$ uniformly on $[0,1]$.
Proof. Since f_{n} is continuous and $f_{n}=f_{n-1}-f_{n-1}^{2} \leqslant f_{n-1}$, it suffices to prove pointwise convergence to 0 (uniform convergence follows from Theorem 7.13). For any $x \in[0,1]$ the values $f_{n}(x)$ are between 0 and 1 , which is readily seen by induction (the product of two numbers in $[0,1]$ lies in the same interval). For a fixed $x \in[0,1]$, the sequence $\left\{f_{n}(x)\right\}$ is decreasing and bounded, and therefore has a limit which we denote by L. Also, $f_{n+1}(x)=f_{n}(x) \cdot\left(1-f_{n}(x)\right) \rightarrow L(1-L)$ as $n \rightarrow \infty$. Since $\lim _{n \rightarrow \infty} f_{n+1}=\lim _{n \rightarrow \infty} f_{n}$, it follows that $L=L(1-L)$. This is only possible when $L=0$.
5. Let \mathscr{C} be the set of all continuous functions from $[0,1]$ to \mathbb{R}. Given $f, g \in \mathscr{C}$, consider the set $N(f, g):=\{x \in[0,1]: f(x) \neq g(x)\}$ and define

$$
d(f, g)= \begin{cases}0 & \text { if } N(f, g)=\varnothing \\ \sup N(f, g) & \text { otherwise }\end{cases}
$$

Show that d is a metric on \mathscr{C}, and then prove that the metric space (\mathscr{C}, d) is not complete.
Proof. Properties of metric: (i) $d \geqslant 0$ by definition. Also, $d(f, g)=0$ if and only if $f(x)=g(x)$ for all $x>0$, in which case the continuity implies $f(0)=g(0)$ as well.
(ii) $d(f, g)=d(g, f)$ because $N(f, g)=N(g, f)$.
(iii) To prove $d(f, h) \leqslant d(f, g)+d(g, h)$, take $x>d(f, g)+d(g, h)$ and observe that $f(x)=g(x)$ and $g(x)=h(x)$ by the definition of d. Hence $f(x)=h(x)$ for all such x, which yields the desired inequality. To prove that (\mathscr{C}, d) is not complete, we need a Cauchy sequence in (\mathscr{C}, d) that fails to have a limit in the sense of (\mathscr{C}, d). One way to create a Cauchy sequence is to cut off the same function at different places, for example

$$
f_{n}(x)=\min (1 / x, n), \quad f_{n}(0)=n,
$$

is the cutoff of $1 / x$ at level n. For $m>n \geqslant N$ we have $d\left(f_{n}, f_{m}\right)=1 / n \leqslant 1 / N \rightarrow 0$ as $N \rightarrow \infty$. Thus the sequence is Cauchy.
Suppose that there is $f \in \mathscr{C}$ such that $d\left(f, f_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Being continuous on $[0,1]$, the function f is bounded: say, $|f| \leqslant M$ for some constant M. Fix a number $\epsilon \in(0,1)$ such that $\epsilon<1 / M$. For all $n>1 / \epsilon$ we have $f_{n}(\epsilon)=1 / \epsilon>M \geqslant f(\epsilon)$. Hence $d\left(f, f_{n}\right) \geqslant \epsilon$, a contradiction.
6. "If $f_{n}:[0,1] \rightarrow \mathbb{R}$ is differentiable on $[0,1]$ for each n, and $f_{n} \rightarrow f$ uniformly on $[0,1]$, then f is differentiable on $[0,1]$."
False: counterexamples were constructed in Homework 4.
7. "If $f_{n}:[0,1] \rightarrow \mathbb{R}$ is Riemann integrable on $[0,1]$ for each n, and $f_{n} \rightarrow f$ uniformly on $[0,1]$, then f is Riemann integrable on $[0,1]$."
True, by Theorem 7.16.

