
Math 602 Exam 2 solutions.

1. Let F be an equicontinuous family of functions from R to R.

Prove that the family F1 = {f ◦ g : f, g ∈ F} is also equicontinuous.

Proof. Fix ε > 0. By the equicontinuity of F , there exists δ > 0 such that for all f ∈ F we have

|f(x) − f(y)| < ε whenever |x − y| < δ. Using the equicontinuity again, find δ′ > 0 such that for all

f ∈ F we have |f(x)− f(y)| < δ whenever |x− y| < δ′.

Now let f and g be any functions from F , and suppose |x− y| < δ′, x, y ∈ R. From the above we have

|f(g(x))− f(g(y))| < ε, as required. �

2. Give an example of a sequence of continuous functions fn : [0, 1]→ R which has the following three

properties: (i) fn → 0 pointwise; (ii)
∫ 1

0
|fn| dx→ 0; (iii)

∫ 1

0
f2

n dx→∞.

Proof. Recall an example given in class to demonstrate that pointwise convergence does not imply

convergence of integrals: the sequence

gn = max(0, n− n2|x− 1/n|) =


n2x, 0 6 x 6 1/n

n2(2/n− x), 1/n 6 x 6 2/n

0, 2/n 6 x 6 1

converges to 0 pointwise but
∫ 1
0 g dx = 1. Also,∫ 1

0
g2
n dx = 2

∫ 1/n

0
n4x2 dx =

2
3
n→∞

Thus, we already have (i) and (iii), but need to make the function a bit smaller to also achieve (ii).

One can try guess-and-check, but the more reliable method is to introduce a coefficient cn > 0 to be

chosen later: fn(x) = cngn(x). No matter what cn is, (i) holds because fn(0) = 0 and for any x ∈ (0, 1]

we have fn(x) = 0 when n > 2/x. Since∫ 1

0
|fn| dx = cn and

∫ 1

0
f2

n dx = c2n ·
2
3
n

We need cn → 0 and nc2n → ∞; both are achieved with cn = n−1/3. Thus, fn = n−1/3gn satisfies (i),

(ii), and (iii). �

3. Prove that
∫ 1

0

1
1 + x

dx =
∞∑

n=0

(−1)n

n+ 1
.

Proof. The geometric series
1

1 + x
=
∞∑

n=0

(−1)nxn, |x| < 1,

converges uniformly on [0, b] for any 0 < b < 1, but it does not converge uniformly on [0, 1). There are

two ways to get around this difficulty: (A) work with [0, b] and then let b→ 1; (B) modify the series to

achieve uniform convergence on [0, 1].



(A) Let 0 < b < 1. Applying the Weierstrass text to
∑∞

n=0(−1)nxn on [0, b], we find that convergence

is uniform because
∑∞

n=0 b
n <∞. Thus, the integral of the sum is the sum of integrals:

(1)
∫ b

0

1
1 + x

dx =
∞∑

n=0

(−1)n

n+ 1
bn, 0 < b < 1.

As b→ 1, the left side of (1) tends to
∫ 1
0

1
1+x dx because∣∣∣∣∫ 1

0

1
1 + x

dx−
∫ b

0

1
1 + x

dx

∣∣∣∣ =
∫ 1

b

1
1 + x

dx 6 (1− b)→ 0.

It remains to show that

(2) lim
b→1

∞∑
n=0

(−1)n

n+ 1
bn =

∞∑
n=0

(−1)n

n+ 1

To this end, consider the function

(3) F (b) =
∞∑

n=0

(−1)n

n+ 1
bn, 0 6 b 6 1.

The series defining F is uniformly convergent on [0, 1] by #3 in Homework 4. Thus F is continuous on

[0, 1]. In particular, lim
b→1

F (b) = F (1), which is exactly (2).

(B) Following the earlier example of 1/(1 + x2), begin with

(4)
2

1 + x
= 1 + 1− x− x+ x2 + x2 − x3 − x3 + x4 + x4 − . . . , |x| < 1

and group the terms as

(5)
2

1 + x
= 1 +

∞∑
n=0

x2n(1− x)2, |x| < 1.

The new series converges at x = 1 as well, and the equality (5) holds at x = 1. Moreover, each term is

nonnegative, which means that partial sums form an increasing series of functions, Since both the partial

sums and their limit are continuous on [0, 1], we conclude (by Theorem 7.13) that the convergence is

uniform on [0, 1]. Hence we can integrate term by term:

(6)
∫ 1

0

2
1 + x

dx = 1 +
∞∑

n=0

∫ 1

0
x2n(1− x)2 dx = 1 +

∞∑
n=0

(
1

2n+ 1
− 2

2n+ 2
+

1
2n+ 3

)
.

It remains to prove that the series in (6) has the expected sum. To this end, rearrange its partial sum:

1 +
N∑

n=0

(
1

2n+ 1
− 2

2n+ 2
+

1
2n+ 3

)
=

1
2N + 3

+ 2
N∑

n=0

(
1

2n+ 1
− 1

2n+ 2

)
and notice that

2
N∑

n=0

(
1

2n+ 1
− 1

2n+ 2

)
= 2

2N+1∑
k=0

(−1)k

k + 1
→ 2

∞∑
k=0

(−1)k

k + 1

as N →∞. �



4. For x ∈ [0, 1], let f0(x) = x and define fn(x) = fn−1(x) ·
(
1− fn−1(x)

)
for n = 1, 2, . . . .

Prove that fn → 0 uniformly on [0, 1].

Proof. Since fn is continuous and fn = fn−1 − f2
n−1 6 fn−1, it suffices to prove pointwise convergence

to 0 (uniform convergence follows from Theorem 7.13). For any x ∈ [0, 1] the values fn(x) are between

0 and 1, which is readily seen by induction (the product of two numbers in [0, 1] lies in the same

interval). For a fixed x ∈ [0, 1], the sequence {fn(x)} is decreasing and bounded, and therefore has

a limit which we denote by L. Also, fn+1(x) = fn(x) · (1 − fn(x)) → L(1 − L) as n → ∞. Since

limn→∞ fn+1 = limn→∞ fn, it follows that L = L(1− L). This is only possible when L = 0. �

5. Let C be the set of all continuous functions from [0, 1] to R. Given f, g ∈ C , consider the set

N(f, g) := {x ∈ [0, 1] : f(x) 6= g(x)} and define

d(f, g) =

{
0 if N(f, g) = ∅;
supN(f, g) otherwise.

Show that d is a metric on C , and then prove that the metric space (C , d) is not complete.

Proof. Properties of metric: (i) d > 0 by definition. Also, d(f, g) = 0 if and only if f(x) = g(x) for all

x > 0, in which case the continuity implies f(0) = g(0) as well.

(ii) d(f, g) = d(g, f) because N(f, g) = N(g, f).

(iii) To prove d(f, h) 6 d(f, g) + d(g, h), take x > d(f, g) + d(g, h) and observe that f(x) = g(x) and

g(x) = h(x) by the definition of d. Hence f(x) = h(x) for all such x, which yields the desired inequality.

To prove that (C , d) is not complete, we need a Cauchy sequence in (C , d) that fails to have a limit in

the sense of (C , d). One way to create a Cauchy sequence is to cut off the same function at different

places, for example

fn(x) = min(1/x, n), fn(0) = n,

is the cutoff of 1/x at level n. For m > n > N we have d(fn, fm) = 1/n 6 1/N → 0 as N →∞. Thus the

sequence is Cauchy.

Suppose that there is f ∈ C such that d(f, fn)→ 0 as n→∞. Being continuous on [0, 1], the function

f is bounded: say, |f | 6 M for some constant M . Fix a number ε ∈ (0, 1) such that ε < 1/M . For all

n > 1/ε we have fn(ε) = 1/ε > M > f(ε). Hence d(f, fn) > ε, a contradiction. �

6. “If fn : [0, 1] → R is differentiable on [0, 1] for each n, and fn → f uniformly on [0, 1], then f is

differentiable on [0, 1].”

False: counterexamples were constructed in Homework 4.

7. “If fn : [0, 1]→ R is Riemann integrable on [0, 1] for each n, and fn → f uniformly on [0, 1], then f

is Riemann integrable on [0, 1].”

True, by Theorem 7.16.


