1. Give an example of a strictly increasing function $\alpha:[0,1] \rightarrow \mathbb{R}$ such that $\int_{0}^{1} x d \alpha(x)=5$ and $\int_{0}^{1} x^{2} d \alpha(x)=2$.

Construction. Recall that $\int f d \alpha$ is linear with respect to α; it behaves well under addition or rescaling of α. Once we find α for which the integrals given above have ratio 5: 2, we can multiply α by a constant to get the desired results.

The obvious candidate $\alpha(x)=x$ gives ratio $\frac{1}{2}: \frac{1}{3}$ (or 3:2). We need to increase the first integral compared to the second one.

For this we should put more "mass" closer to 0 , where x is much bigger than x^{2}. One way to do this is to add a point mass m at $c \in(0,1)$, both numbers to be chosen later. This means replacing $\alpha(x)=x$ with the following function:

$$
\alpha_{1}(x)= \begin{cases}x & \text { if } x<c \tag{1}\\ x+m & \text { if } x \geqslant c\end{cases}
$$

(Note that α_{1} is α plus a step function.) Computation yields

$$
\int_{0}^{1} x d \alpha_{1}(x)=m c+\frac{1}{2}, \quad \int_{0}^{1} x^{2} d \alpha_{1}(x)=m c^{2}+\frac{1}{3} .
$$

We want $m c=9 / 2$ and $m c^{2}=5 / 3$. This is achieved with $c=10 / 27$ and $m=20 / 81$. With this choice, function (1) satisfies the requirements.

Instead of adding a point mass, one can make the density different on two halves of the interval: $\alpha_{2}^{\prime}=a$ on $[0,1 / 2]$ and $\alpha_{2}^{\prime}=b$ on $[1 / 2,1]$, with constants to be chosen later. This gives

$$
\int_{0}^{1} x d \alpha_{2}(x)=\frac{a}{8}+\frac{3 b}{8} \quad \int_{0}^{1} x^{2} d \alpha_{1}(x)=\frac{a}{24}+\frac{7 b}{24}
$$

It remains to solve two linear equations to find that $a=34$ and $b=2$ work. Thus,

$$
\alpha_{2}(x)= \begin{cases}34 x & \text { if } x<1 / 2 \tag{2}\\ 2 x+16 & \text { if } x \geqslant 1 / 2\end{cases}
$$

is also a solution.
2. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=(-1)^{\left\lfloor x^{2}\right\rfloor}$ where $\left\lfloor x^{2}\right\rfloor$ is the greatest integer that does not exceed x^{2}.
Prove that $\lim _{T \rightarrow \infty} \int_{0}^{T} f d x$ exists (as a real number).
Proof. Another way to express f is by saying that $f(x)=(-1)^{k}$ when $k \leqslant x^{2}<k+1$, for $k=0,1,2, \ldots$. Hence

$$
\int_{\sqrt{k}}^{\sqrt{k+1}} f d x=(-1)^{k}(\sqrt{k+1}-\sqrt{k})
$$

(although f is different from $(-1)^{k}$ at the right endpoint, this does not change the integral, as in Homework 2). It follows that

$$
\int_{0}^{\sqrt{n}} f d x=\sum_{k=0}^{n-1}(-1)^{k}(\sqrt{k+1}-\sqrt{k})=\sum_{k=0}^{n-1} \frac{(-1)^{k}}{\sqrt{k+1}+\sqrt{k}}
$$

This sum has a limit as $n \rightarrow \infty$, because the series converges (alternating test).
Given any $T>0$, let $n=\left\lfloor T^{2}\right\rfloor$ and write

$$
\int_{0}^{T} f d x=\int_{0}^{\sqrt{n}} f d x+\int_{\sqrt{n}}^{T} f d x
$$

where the absolute value of the last integral does not exceed

$$
T-\sqrt{n}=\frac{T^{2}-n}{T+\sqrt{n}} \leqslant \frac{1}{T+\sqrt{n}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Hence $\int_{0}^{T} f d x$ has the limit $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{\sqrt{k+1}+\sqrt{k}}$.
3. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is integrable $(f \in \mathscr{R})$ and the set $\{x \in[0,1]: f(x) \neq 0\}$ is at most countable.
Prove that $\int_{0}^{1} f d x=0$.
Proof. Since $\left|\int_{0}^{1} f d x\right| \leqslant \int_{0}^{1}|f| d x$ (the integral triangle inequality), it suffices to prove that $\int_{0}^{1}|f| d x=0$. Any lower sum of this integral is 0 , because every subinterval contains points where $|f|=0$. Hence the supremum of lower sums is also 0 . Since f is integrable, so is $|f|$. We conclude that $\int_{0}^{1}|f| d x=0$.

One can do without the triangle inequality by observing that for any subinterval I in any partition $\sup _{I} f \geqslant 0$, hence $U(P, f) \geqslant 0$. Since 0 is a lower bound for all upper sums, we conclude that $\int_{0}^{1} f \geqslant 0$. A similar argument leads from $\inf _{I} f \leqslant 0$ to $\underline{\int}_{0}^{1} f \leqslant 0$. But the condition $f \in \mathscr{R}$ means that the upper and lower integrals have the same value, and this common value can only be 0 .
4. Let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ be a rectifiable curve such that γ attains the values $(0,0),(1,0)$, and $(0,1)$, not necessarily in this order.
Prove that the length of γ is at least 2 .
Proof. Let $a<b<c$ be some points in $[0,1]$ where γ attains the aforementioned three values (in some order). Let P be the partition formed by these points together with 0 and 1 . Then

$$
\Lambda(\gamma) \geqslant \Lambda(P, \gamma) \geqslant|\gamma(b)-\gamma(a)|+|\gamma(c)-\gamma(b)| \geqslant 1+1=2
$$

because the distance between any two of the points $(0,0),(1,0)$, and $(0,1)$ is at least 1 .
5. Let $\alpha:[0,1] \rightarrow \mathbb{R}$ be an increasing function. Suppose that $f \in \mathscr{R}(\alpha)$ on $[0,1]$.

Prove that $f \in \mathscr{R}(\beta)$ on $[0,1]$, where $\beta=\alpha^{3}$.
Proof. We know that for any $\epsilon>0$ there is P such that

$$
\sum_{i=1}^{n} \underset{\left[x_{i-1}, x_{i}\right]}{\text { osc }} f\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)<\epsilon\right.
$$

We want to estimate a similar sum with β. Let $M=\max (|\alpha(0)|,|\alpha(1)|)$. The function $\varphi(t)=t^{3}$ has derivative $\varphi^{\prime}(t)=3 t^{2}$, hence $\left|\varphi^{\prime}(t)\right| \leqslant 3 M^{2}$ on $[-M, M]$. By the Mean Value Theorem $\left|t^{3}-s^{3}\right| \leqslant 3 M^{2}|t-s|$ for $t, s \in[-M, M]$. (This can be also proved algebraically, using $t^{3}-s^{3}=$ $(t-s)\left(t^{2}+t s+s^{2}\right)$.) Thus,

$$
\sum_{i=1}^{n} \underset{\left[x_{i-1}, x_{i}\right]}{\text { osc }} f\left(\beta\left(x_{i}\right)-\beta\left(x_{i-1}\right) \leqslant 3 M^{2} \sum_{i=1}^{n} \underset{\left[x_{i-1}, x_{i}\right]}{\operatorname{osc}} f\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)<3 M^{2} \epsilon\right.\right.
$$

Since ϵ can be chosen arbitrarily small, $f \in \mathscr{R}(\beta)$.
6. "If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at every point of \mathbb{R}, then for any $a<b$ we have $\int_{a}^{b} f^{\prime}(x) d x=$ $f(b)-f(a) . "$

False: the derivative of a differentiable function is not necessarily integrable.
7. "If $\mathbf{f}:[0,2] \rightarrow \mathbb{R}^{2}$ is a continuous vector-valued function such that $3 \leqslant|\mathbf{f}(x)| \leqslant 5$ for every $x \in[0,2]$, then $6 \leqslant\left|\int_{0}^{2} \mathbf{f}(x) d x\right| \leqslant 10$."

False. If f winds around the origin (say, in a circle of radius 4), the integral may even be equal to 0 . For a concrete example, take $\mathbf{f}(t)=(4 \cos \pi t, 4 \sin \pi t)$.

