1. Give an example of a strictly increasing function $\alpha \colon [0,1] \to \mathbb{R}$ such that $\int_0^1 x \, d\alpha(x) = 5$ and $\int_0^1 x^2 \, d\alpha(x) = 2$.

and $\int_0^1 x^2 d\alpha(x) = 2.$

Construction. Recall that $\int f d\alpha$ is linear with respect to α ; it behaves well under addition or rescaling of α . Once we find α for which the integrals given above have ratio 5: 2, we can multiply α by a constant to get the desired results.

The obvious candidate $\alpha(x) = x$ gives ratio $\frac{1}{2}:\frac{1}{3}$ (or 3:2). We need to increase the first integral compared to the second one.

For this we should put more "mass" closer to 0, where x is much bigger than x^2 . One way to do this is to add a point mass m at $c \in (0, 1)$, both numbers to be chosen later. This means replacing $\alpha(x) = x$ with the following function:

(1)
$$\alpha_1(x) = \begin{cases} x & \text{if } x < c \\ x + m & \text{if } x \ge c \end{cases}$$

(Note that α_1 is α plus a step function.) Computation yields

$$\int_0^1 x \, d\alpha_1(x) = mc + \frac{1}{2}, \qquad \int_0^1 x^2 \, d\alpha_1(x) = mc^2 + \frac{1}{3}.$$

We want $mc = \frac{9}{2}$ and $mc^2 = \frac{5}{3}$. This is achieved with $c = \frac{10}{27}$ and $m = \frac{20}{81}$. With this choice, function (1) satisfies the requirements.

Instead of adding a point mass, one can make the density different on two halves of the interval: $\alpha'_2 = a$ on [0, 1/2] and $\alpha'_2 = b$ on [1/2, 1], with constants to be chosen later. This gives

$$\int_0^1 x \, d\alpha_2(x) = \frac{a}{8} + \frac{3b}{8} \qquad \int_0^1 x^2 \, d\alpha_1(x) = \frac{a}{24} + \frac{7b}{24}$$

It remains to solve two linear equations to find that a = 34 and b = 2 work. Thus,

(2)
$$\alpha_2(x) = \begin{cases} 34x & \text{if } x < 1/2\\ 2x + 16 & \text{if } x \ge 1/2 \end{cases}$$

is also a solution.

2. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = (-1)^{\lfloor x^2 \rfloor}$ where $\lfloor x^2 \rfloor$ is the greatest integer that does not exceed x^2 .

Prove that $\lim_{T \to \infty} \int_0^T f \, dx$ exists (as a real number).

Proof. Another way to express f is by saying that $f(x) = (-1)^k$ when $k \leq x^2 < k+1$, for $k = 0, 1, 2, \ldots$. Hence

$$\int_{\sqrt{k}}^{\sqrt{k+1}} f \, dx = (-1)^k \left(\sqrt{k+1} - \sqrt{k}\right)$$

(although f is different from $(-1)^k$ at the right endpoint, this does not change the integral, as in Homework 2). It follows that

$$\int_0^{\sqrt{n}} f \, dx = \sum_{k=0}^{n-1} (-1)^k \left(\sqrt{k+1} - \sqrt{k}\right) = \sum_{k=0}^{n-1} \frac{(-1)^k}{\sqrt{k+1} + \sqrt{k}}.$$

This sum has a limit as $n \to \infty$, because the series converges (alternating test).

Given any T > 0, let $n = |T^2|$ and write

$$\int_0^T f \, dx = \int_0^{\sqrt{n}} f \, dx + \int_{\sqrt{n}}^T f \, dx$$

where the absolute value of the last integral does not exceed

$$T - \sqrt{n} = \frac{T^2 - n}{T + \sqrt{n}} \leqslant \frac{1}{T + \sqrt{n}} \to 0 \text{ as } n \to \infty.$$

Hence $\int_0^T f \, dx$ has the limit $\sum_{k=0}^\infty \frac{(-1)^k}{\sqrt{k+1} + \sqrt{k}}$. \square **3.** Suppose that $f: [0,1] \to \mathbb{R}$ is integrable $(f \in \mathscr{R})$ and the set $\{x \in [0,1]: f(x) \neq 0\}$ is at

3. Suppose that $f: [0,1] \to \mathbb{R}$ is integrable $(f \in \mathscr{R})$ and the set $\{x \in [0,1]: f(x) \neq 0\}$ is at most countable.

Prove that
$$\int_0^1 f \, dx = 0$$
.

Proof. Since $\left| \int_{0}^{1} f \, dx \right| \leq \int_{0}^{1} |f| \, dx$ (the integral triangle inequality), it suffices to prove that $\int_{0}^{1} |f| \, dx = 0$. Any lower sum of this integral is 0, because every subinterval contains points where |f| = 0. Hence the supremum of lower sums is also 0. Since f is integrable, so is |f|. We conclude that $\int_{0}^{1} |f| \, dx = 0$.

One can do without the triangle inequality by observing that for any subinterval I in any partition $\sup_I f \ge 0$, hence $U(P, f) \ge 0$. Since 0 is a lower bound for all upper sums, we conclude that $\overline{\int}_0^1 f \ge 0$. A similar argument leads from $\inf_I f \le 0$ to $\underline{\int}_0^1 f \le 0$. But the condition $f \in \mathscr{R}$ means that the upper and lower integrals have the same value, and this common value can only be 0.

4. Let $\gamma: [0,1] \to \mathbb{R}^2$ be a rectifiable curve such that γ attains the values (0,0), (1,0), and (0,1), not necessarily in this order.

Prove that the length of γ is at least 2.

Proof. Let a < b < c be some points in [0, 1] where γ attains the aforementioned three values (in some order). Let P be the partition formed by these points together with 0 and 1. Then

$$\Lambda(\gamma) \ge \Lambda(P,\gamma) \ge |\gamma(b) - \gamma(a)| + |\gamma(c) - \gamma(b)| \ge 1 + 1 = 2$$

because the distance between any two of the points (0,0), (1,0), and (0,1) is at least 1.

5. Let $\alpha : [0,1] \to \mathbb{R}$ be an increasing function. Suppose that $f \in \mathscr{R}(\alpha)$ on [0,1]. Prove that $f \in \mathscr{R}(\beta)$ on [0,1], where $\beta = \alpha^3$.

Proof. We know that for any $\epsilon > 0$ there is P such that

$$\sum_{i=1}^{n} \underset{[x_{i-1},x_i]}{\operatorname{osc}} f(\alpha(x_i) - \alpha(x_{i-1}) < \epsilon.$$

We want to estimate a similar sum with β . Let $M = \max(|\alpha(0)|, |\alpha(1)|)$. The function $\varphi(t) = t^3$ has derivative $\varphi'(t) = 3t^2$, hence $|\varphi'(t)| \leq 3M^2$ on [-M, M]. By the Mean Value Theorem $|t^3 - s^3| \leq 3M^2|t - s|$ for $t, s \in [-M, M]$. (This can be also proved algebraically, using $t^3 - s^3 = (t - s)(t^2 + ts + s^2)$.) Thus,

$$\sum_{i=1}^{n} \underset{[x_{i-1},x_i]}{\operatorname{osc}} f(\beta(x_i) - \beta(x_{i-1}) \leq 3M^2 \sum_{i=1}^{n} \underset{[x_{i-1},x_i]}{\operatorname{osc}} f(\alpha(x_i) - \alpha(x_{i-1}) < 3M^2 \epsilon$$

Since ϵ can be chosen arbitrarily small, $f \in \mathscr{R}(\beta)$.

6. "If $f : \mathbb{R} \to \mathbb{R}$ is differentiable at every point of \mathbb{R} , then for any a < b we have $\int_a^b f'(x) dx = f(b) - f(a)$."

False: the derivative of a differentiable function is not necessarily integrable.

7. "If $\mathbf{f}: [0,2] \to \mathbb{R}^2$ is a continuous vector-valued function such that $3 \leq |\mathbf{f}(x)| \leq 5$ for every $x \in [0,2]$, then $6 \leq \left| \int_0^2 \mathbf{f}(x) \, dx \right| \leq 10$."

False. If f winds around the origin (say, in a circle of radius 4), the integral may even be equal to 0. For a concrete example, take $\mathbf{f}(t) = (4\cos \pi t, 4\sin \pi t)$.