Your name: _____

READ THIS FIRST: Do not open the exam booklet until told to do so. Out of the first **five** problems, do any **four** (worth 10 points each). If you attempt all four problems, indicate which one is not to be graded. The exam concludes with two True/False questions worth 5 points each. You may not use the textbook or notes.

Part I: Do four out of five problems. If you attempt all five problems, indicate which one is not to be graded. Support your claims.

1. Give an example of a strictly increasing function $\alpha \colon [0,1] \to \mathbb{R}$ such that $\int_0^1 x \, d\alpha(x) = 5$ and $\int_0^1 x^2 \, d\alpha(x) = 2$.

2. Define $f: \mathbb{R} \to \mathbb{R}$ as follows: $f(x) = (-1)^{\lfloor x^2 \rfloor}$ where $\lfloor x^2 \rfloor$ is the greatest integer that does not exceed x^2 . Prove that $\lim_{T \to \infty} \int_0^T f \, dx$ exists (as a real number). **3.** Suppose that $f: [0,1] \to \mathbb{R}$ is integrable $(f \in \mathscr{R})$ and the set $\{x \in [0,1]: f(x) \neq 0\}$ is at most countable. Prove that $\int_0^1 f \, dx = 0$. **4.** Let $\gamma: [0,1] \to \mathbb{R}^2$ be a rectifiable curve such that γ attains the values (0,0), (1,0), and (0,1), not necessarily in this order.

Prove that the length of γ is at least 2.

5. Let $\alpha \colon [0,1] \to \mathbb{R}$ be an increasing function. Suppose that $f \in \mathscr{R}(\alpha)$ on [0,1]. Prove that $f \in \mathscr{R}(\beta)$ on [0,1], where $\beta = \alpha^3$.

Part II: True/False questions, 5 points each. You do not need to support your claims in this part.

6. "If $f : \mathbb{R} \to \mathbb{R}$ is differentiable at every point of \mathbb{R} , then for any a < b we have $\int_a^b f'(x) dx = f(b) - f(a)$."

True _____ *False* _____

7. "If $\mathbf{f}: [0,2] \to \mathbb{R}^2$ is a continuous vector-valued function such that $3 \leq |\mathbf{f}(x)| \leq 5$ for every $x \in [0,2]$, then $6 \leq \left| \int_0^2 \mathbf{f}(x) \, dx \right| \leq 10$."

True _____ *False* _____