Your name:
READ THIS FIRST: Do not open the exam booklet until told to do so. Out of the first five problems, do any four (worth 10 points each). If you attempt all four problems, indicate which one is not to be graded. The exam concludes with two True/False questions worth 5 points each. You may not use the textbook or notes.

Part I: Do four out of five problems. If you attempt all five problems, indicate which one is not to be graded. Support your claims.

1. Give an example of a strictly increasing function $\alpha:[0,1] \rightarrow \mathbb{R}$ such that $\int_{0}^{1} x d \alpha(x)=5$ and $\int_{0}^{1} x^{2} d \alpha(x)=2$.
2. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ as follows: $f(x)=(-1)^{\left\lfloor x^{2}\right\rfloor}$ where $\left\lfloor x^{2}\right\rfloor$ is the greatest integer that does not exceed x^{2}.
Prove that $\lim _{T \rightarrow \infty} \int_{0}^{T} f d x$ exists (as a real number).
3. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is integrable $(f \in \mathscr{R})$ and the set $\{x \in[0,1]: f(x) \neq 0\}$ is at most countable.
Prove that $\int_{0}^{1} f d x=0$.
4. Let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ be a rectifiable curve such that γ attains the values $(0,0),(1,0)$, and $(0,1)$, not necessarily in this order.
Prove that the length of γ is at least 2.
5. Let $\alpha:[0,1] \rightarrow \mathbb{R}$ be an increasing function. Suppose that $f \in \mathscr{R}(\alpha)$ on $[0,1]$. Prove that $f \in \mathscr{R}(\beta)$ on $[0,1]$, where $\beta=\alpha^{3}$.

Part II: True/False questions, 5 points each. You do not need to support your claims in this part.

6. "If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at every point of \mathbb{R}, then for any $a<b$ we have $\int_{a}^{b} f^{\prime}(x) d x=$ $f(b)-f(a) . "$

True \qquad False \qquad
7. "If $\mathbf{f}:[0,2] \rightarrow \mathbb{R}^{2}$ is a continuous vector-valued function such that $3 \leqslant|\mathbf{f}(x)| \leqslant 5$ for every $x \in[0,2]$, then $6 \leqslant\left|\int_{0}^{2} \mathbf{f}(x) d x\right| \leqslant 10$."

True \qquad False \qquad

