Math 601 Final Exam solutions.

1. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $f(0)=f^{\prime}(0)=0$ and $f^{\prime \prime}(x) \geqslant 10$ for all $x \in \mathbb{R}$. Prove that $f(2) \geqslant 20$.
Proof. Let P_{1} be the Taylor polynomial of degree (at most) 1 with center 0 ; this polynomial is identically 0 . Apply Taylor's theorem:

$$
f(2)=P_{1}(2)+\frac{f^{\prime \prime}(\xi)}{2} 2^{2}=2 f^{\prime \prime}(\xi) \geqslant 20
$$

2. Suppose $\left\{x_{n}: n=1,2, \ldots\right\}$ is a sequence in a complete metric space X such that the series

$$
\sum_{n=1}^{\infty} d\left(x_{n}, x_{n+1}\right)
$$

converges. Prove that $\lim _{n \rightarrow \infty} x_{n}$ exists.
Proof. Since X is complete, it suffices to show that $\left\{x_{n}\right\}$ is a Cauchy sequence: that is, for any $\varepsilon>0$ there exists N such that $d\left(x_{n}, x_{m}\right)<\varepsilon$ whenever $m, n \geqslant N$. We may assume $m<n$ without losing generality. By the (generalized) triangle inequality,

$$
\begin{equation*}
d\left(x_{m}, x_{n}\right) \leqslant \sum_{k=m}^{n-1} d\left(x_{k}, x_{k+1}\right) \tag{1}
\end{equation*}
$$

The Cauchy criterion for convergence of a series tells us that for any $\varepsilon>0$ there is N such that the right-hand side of (1) is less than ε whenever $m \geqslant N$. Hence the other side is less than ε too.
3. Let a and b be distinct points of a connected metric space X. Let r be a number such that $0<r<d(a, b)$. Prove that there exists $x \in X$ such that $d(x, a)=r$.
Proof. By contrapositive. Suppose there is no such x. Then $X=A \cup B$ where $A=\{x \in$ $X: d(x, a)<r\}$ and $B=\{x \in X: d(x, a)>r\}$ are disjoint sets. Since $a \in A$ and $b \in B$, neither set is empty. It remains to show that A and B are separated. For this it suffices to show that they are both closed. It is easier to show that complements (which are B and A again) are open. Indeed, if $x \in A$, then let $\delta=r-d(x, a)$ and use the triangle inequality to confirm that $N_{\delta}(x) \subset A$. And if $x \in B$, then let $\delta=d(x, a)-r$ and use the triangle inequality to confirm that $N_{\delta}(x) \subset B$.
4. Suppose that $f:(0,+\infty) \rightarrow \mathbb{R}$ is a uniformly continuous function such that $f(2 x)=f(x)$ for all $x \in(0, \infty)$. Prove that f is a constant function.
Proof. Suppose that $f(a) \neq f(b)$ for some $a, b \in \mathbb{R}$. Let $\varepsilon=\frac{|f(a)-f(b)|}{2}$. By uniform continuity, there exists $\delta>0$ such that

$$
\begin{equation*}
|f(x)-f(y)|<\varepsilon \quad \text { whenever } \quad|x-y|<\delta . \tag{2}
\end{equation*}
$$

Choose a positive integer k large enough so that

$$
\frac{|a-b|}{2^{k}}<\delta
$$

Note that $f\left(a / 2^{k}\right)=f(a)$ and $f\left(b / 2^{k}\right)=f(b)$. Thus, we obtain a contradiction with (2) by choosing $x=a / 2^{k}$ and $y=b / 2^{k}$.
5. The power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ has radius of convergence 3. The radius of convergence of $\sum_{n=0}^{\infty} b_{n} z^{n}$ is equal to 4. Prove that the radius of convergence of $\sum_{n=0}^{\infty}\left(a_{n} b_{n}\right) z^{n}$ is at least 12 .
Proof. We are given that $\lim \sup \left|a_{n}\right|^{1 / n}=1 / 3$ and $\lim \sup \left|b_{n}\right|^{1 / n}=1 / 4$. Thus, for any $\varepsilon>0$ there exist integers N_{1}, N_{2} such that

$$
\begin{aligned}
& \left|a_{n}\right|^{1 / n}<\frac{\sqrt{1+\varepsilon}}{3} \quad \text { whenever } n \geqslant N_{1} \\
& \left|b_{n}\right|^{1 / n}<\frac{\sqrt{1+\varepsilon}}{4} \quad \text { whenever } n \geqslant N_{2}
\end{aligned}
$$

(This is a characteristic property of limsup, Theorem 3.17.)
Thus, for $n \geqslant \max \left(N_{1}, N_{2}\right)$ we have

$$
\left|a_{n} b_{n}\right|^{1 / n}<\frac{1+\varepsilon}{12}
$$

It follows that $\lim \sup \left|a_{n} b_{n}\right|^{1 / n} \leqslant \frac{1+\varepsilon}{12}$. And since $\varepsilon>0$ was arbitrary, $\lim \sup \left|a_{n} b_{n}\right|^{1 / n} \leqslant 1 / 12$.
6. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function. Define $g:[0,1] \rightarrow \mathbb{R}$ as follows:

$$
g(x)=\sup \{f(t): 0 \leqslant t \leqslant x\}
$$

Prove that g is continuous.
Proof. Note that f is uniformly continuous (this is not strictly necessary for the proof, but uniform continuity makes it simpler). So, for any $\varepsilon>0$, there is $\delta>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever $|x-y|<\delta$. We claim that $|f(x)-f(y)| \leqslant \varepsilon$ whenever $|x-y|<\delta$; this is enough for (uniform) continuity of g). Without loss of generality take $x>y$. Note that $g(x) \geqslant g(y)$ because $g(x)$ is the supremum of a larger set. In the opposite direction,

$$
\begin{equation*}
g(x) \leqslant \max (g(y), \sup \{f(t): y<t \leqslant x\}) \tag{3}
\end{equation*}
$$

because the number on the right is an upper bound for $\{f(t): 0 \leqslant t \leqslant x\}$. Furthermore, $f(y)+\varepsilon$ is an upper bound for $\{f(t): y<t \leqslant x\}$ because $f(t)-f(y)<\varepsilon$ for any such t. Thus we conclude with

$$
g(x) \leqslant \max (g(y), f(y)+\varepsilon) \leqslant g(y)+\varepsilon
$$

as desired.
7. "If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that the set $\{x \in \mathbb{R}: f(x)>0\}$ is uncountable, then there exists a number $\varepsilon>0$ such that the set $\{x \in \mathbb{R}: f(x) \geqslant \varepsilon\}$ is uncountable."
True, because

$$
\{x \in \mathbb{R}: f(x)>0\}=\bigcup_{n=1}^{\infty}\{x \in \mathbb{R}: f(x)>1 / n\}
$$

If all sets on the right were at most countable, the set on the left would be as well.
8. "If A and B are open subsets of \mathbb{R}, then the set $A \backslash B$ is also open."

False. Take $A=(0,2)$ and $B=(0,1)$; the difference is $[1,2)$.
9. "If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function differentiable at 0 , then $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{\sqrt{|x|}}=0$." True, because

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{\sqrt{|x|}}=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x} \cdot \frac{x}{\sqrt{|x|}}=f^{\prime}(0) \cdot \lim _{x \rightarrow 0} \frac{x}{\sqrt{|x|}}=f^{\prime}(0) \cdot 0=0
$$

