
Math 601 Final Exam solutions.

1. Suppose that f : R → R is a function such that f(0) = f ′(0) = 0 and f ′′(x) > 10 for all

x ∈ R. Prove that f(2) > 20.

Proof. Let P1 be the Taylor polynomial of degree (at most) 1 with center 0; this polynomial is

identically 0. Apply Taylor’s theorem:

f(2) = P1(2) +
f ′′(ξ)

2
22 = 2f ′′(ξ) > 20

2. Suppose {xn : n = 1, 2, . . . } is a sequence in a complete metric space X such that the series
∞∑

n=1

d(xn, xn+1)

converges. Prove that lim
n→∞

xn exists.

Proof. Since X is complete, it suffices to show that {xn} is a Cauchy sequence: that is, for

any ε > 0 there exists N such that d(xn, xm) < ε whenever m, n > N . We may assume m < n

without losing generality. By the (generalized) triangle inequality,

(1) d(xm, xn) 6
n−1∑

k=m

d(xk, xk+1)

The Cauchy criterion for convergence of a series tells us that for any ε > 0 there is N such that

the right-hand side of (1) is less than ε whenever m > N . Hence the other side is less than ε

too.

3. Let a and b be distinct points of a connected metric space X. Let r be a number such that

0 < r < d(a, b). Prove that there exists x ∈ X such that d(x, a) = r.

Proof. By contrapositive. Suppose there is no such x. Then X = A ∪ B where A = {x ∈
X : d(x, a) < r} and B = {x ∈ X : d(x, a) > r} are disjoint sets. Since a ∈ A and b ∈ B,

neither set is empty. It remains to show that A and B are separated. For this it suffices to show

that they are both closed. It is easier to show that complements (which are B and A again) are

open. Indeed, if x ∈ A, then let δ = r − d(x, a) and use the triangle inequality to confirm that

Nδ(x) ⊂ A. And if x ∈ B, then let δ = d(x, a) − r and use the triangle inequality to confirm

that Nδ(x) ⊂ B.

4. Suppose that f : (0, +∞) → R is a uniformly continuous function such that f(2x) = f(x) for

all x ∈ (0,∞). Prove that f is a constant function.

Proof. Suppose that f(a) 6= f(b) for some a, b ∈ R. Let ε = |f(a)−f(b)|
2

. By uniform continuity,

there exists δ > 0 such that

(2) |f(x)− f(y)| < ε whenever |x− y| < δ.



Choose a positive integer k large enough so that

|a− b|
2k

< δ

Note that f(a/2k) = f(a) and f(b/2k) = f(b). Thus, we obtain a contradiction with (2) by

choosing x = a/2k and y = b/2k.

5. The power series
∞∑

n=0

anzn has radius of convergence 3. The radius of convergence of
∞∑

n=0

bnz
n

is equal to 4. Prove that the radius of convergence of
∞∑

n=0

(anbn)zn is at least 12.

Proof. We are given that lim sup|an|1/n = 1/3 and lim sup|bn|1/n = 1/4. Thus, for any ε > 0 there

exist integers N1, N2 such that

|an|1/n <

√
1 + ε

3
whenever n > N1

|bn|1/n <

√
1 + ε

4
whenever n > N2

(This is a characteristic property of lim sup, Theorem 3.17.)

Thus, for n > max(N1, N2) we have

|anbn|1/n <
1 + ε

12

It follows that lim sup|anbn|1/n 6 1+ε
12

. And since ε > 0 was arbitrary, lim sup|anbn|1/n 6 1/12.

6. Suppose that f : [0, 1] → R is a continuous function. Define g : [0, 1] → R as follows:

g(x) = sup{f(t) : 0 6 t 6 x}
Prove that g is continuous.

Proof. Note that f is uniformly continuous (this is not strictly necessary for the proof, but

uniform continuity makes it simpler). So, for any ε > 0, there is δ > 0 such that |f(x)−f(y)| < ε

whenever |x− y| < δ. We claim that |f(x)− f(y)| 6 ε whenever |x− y| < δ; this is enough for

(uniform) continuity of g). Without loss of generality take x > y. Note that g(x) > g(y) because

g(x) is the supremum of a larger set. In the opposite direction,

(3) g(x) 6 max(g(y), sup{f(t) : y < t 6 x})
because the number on the right is an upper bound for {f(t) : 0 6 t 6 x}. Furthermore, f(y)+ ε

is an upper bound for {f(t) : y < t 6 x} because f(t) − f(y) < ε for any such t. Thus we

conclude with

g(x) 6 max(g(y), f(y) + ε) 6 g(y) + ε

as desired.



7. “If f : R → R is a function such that the set {x ∈ R : f(x) > 0} is uncountable, then there

exists a number ε > 0 such that the set {x ∈ R : f(x) > ε} is uncountable.”

True, because

{x ∈ R : f(x) > 0} =
∞⋃

n=1

{x ∈ R : f(x) > 1/n}.

If all sets on the right were at most countable, the set on the left would be as well.

8. “If A and B are open subsets of R, then the set A \B is also open.”

False. Take A = (0, 2) and B = (0, 1); the difference is [1, 2).

9. “If f : R→ R is a function differentiable at 0, then lim
x→0

f(x)− f(0)√
|x| = 0.”

True, because

lim
x→0

f(x)− f(0)√
|x| = lim

x→0

f(x)− f(0)

x
· x√

|x| = f ′(0) · lim
x→0

x√
|x| = f ′(0) · 0 = 0


