Math 601 Final Exam (12/17/10). Max total score 50.
Your name:
READ THIS FIRST: Do not open the exam booklet until told to do so. Out of the first six problems, do any four (worth 10 points each). If you attempt more than four problems, indicate which ones are not to be graded.
The second part consists of three True/False questions, out of which you should answer exactly two (worth 5 points each).
You may not use the textbook or notes. Rough work can be done on back pages of the booklet. Giving or receiving unauthorized aid during an exam is a violation of Syracuse University Academic Integrity Policy.

Part I: Do four out of six problems. If you attempt more than four problems, indicate which ones are not to be graded. Support your claims.

1. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $f(0)=f^{\prime}(0)=0$ and $f^{\prime \prime}(x) \geqslant 10$ for all $x \in \mathbb{R}$. Prove that $f(2) \geqslant 20$.
2. Suppose $\left\{x_{n}: n=1,2, \ldots\right\}$ is a sequence in a complete metric space X such that the series

$$
\sum_{n=1}^{\infty} d\left(x_{n}, x_{n+1}\right)
$$

converges. Prove that $\lim _{n \rightarrow \infty} x_{n}$ exists.
3. Let a and b be distinct points of a connected metric space X. Let r be a number such that $0<r<d(a, b)$. Prove that there exists $x \in X$ such that $d(x, a)=r$.
4. Suppose that $f:(0,+\infty) \rightarrow \mathbb{R}$ is a uniformly continuous function such that $f(2 x)=f(x)$ for all $x \in(0, \infty)$. Prove that f is a constant function.
5. The power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ has radius of convergence 3. The radius of convergence of $\sum_{n=0}^{\infty} b_{n} z^{n}$ is equal to 4 . Prove that the radius of convergence of $\sum_{n=0}^{\infty}\left(a_{n} b_{n}\right) z^{n}$ is at least 12 .
6. Suppose that $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function. Define $g:[0,1] \rightarrow \mathbb{R}$ as follows:

$$
g(x)=\sup \{f(t): 0 \leqslant t \leqslant x\}
$$

Prove that g is continuous.

Part II: Answer two out of three True/False questions. If you try more than two, indicate which one is not to be graded. You do not need to support your claims in this part.
7. "If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that the set $\{x \in \mathbb{R}: f(x)>0\}$ is uncountable, then there exists a number $\varepsilon>0$ such that the set $\{x \in \mathbb{R}: f(x) \geqslant \varepsilon\}$ is uncountable."

True \qquad False \qquad
8. "If A and B are open subsets of \mathbb{R}, then the set $A \backslash B$ is also open."

True \qquad False \qquad
9. "If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function differentiable at 0 , then $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{\sqrt{|x|}}=0$."

True \qquad False \qquad

