YOUR NAME:

READ THIS FIRST: Do not open the exam booklet until told to do so. Out of the first **four** problems, do any **three** (worth 10 points each). If you attempt all four problems, indicate which one is not to be graded. The exam concludes with two True/False questions worth 5 points each. You may not use the textbook or notes. Rough work can be done on back pages of the booklet. Giving or receiving unauthorized aid during an exam is a violation of Syracuse University Academic Integrity Policy.

Part I: Do three out of four problems. If you attempt all four problems, indicate which one is not to be graded. Support your claims.

1. Let X be a metric space. Suppose that $K \subset X$ is a compact set which has no limit points in X. Prove that K is a finite set.

2. Let E_n , n = 1, 2, ..., be some collection of connected subsets of a metric space X. Suppose that for each $n \in \mathbb{N}$ the intersection $E_n \cap E_{n+1}$ is nonempty. Prove that the union $\bigcup_{n=1}^{\infty} E_n$ is a connected set.

3. Let $\{p_n\}$ and $\{q_n\}$ be two sequences in a metric space X. Suppose that $\lim_{n \to \infty} d(p_n, q_n) = 0$. Prove that if $\{p_n\}$ is a Cauchy sequence, then $\{q_n\}$ is also a Cauchy sequence. 4'. Suppose that $\{x_n\}$ is a sequence of real numbers such that $\liminf_{n\to\infty} x_n^2 = 0$. Prove that $\liminf_{n\to\infty} x_n \leq 0$.

Part II: True/False questions, 5 points each. You do not need to support your claims in this part.

5. "If $\{x_n\}$ is a sequence of real numbers such that $\lim_{n \to \infty} |x_n - x_{n+1}| = 0$, then $\{x_n\}$ converges." *True* _____ *False* _____

6. "If $\{x_n\}$ is a bounded sequence of real numbers, then

 $\limsup_{n \to \infty} |x_n| = \left| \limsup_{n \to \infty} x_n \right| "$

True _____ *False* _____