Math 601 Exam 1 (09/23/09). Max total score 40.
Your name: \qquad
READ THIS FIRST: Do not open the exam booklet until told to do so. Out of the first four problems, do any three (worth 10 points each). If you attempt all four problems, indicate which one is not to be graded. The exam concludes with two True/False questions worth 5 points each. You may not use the textbook or notes. Rough work can be done on back pages of the booklet. Giving or receiving unauthorized aid during an exam is a violation of Syracuse University Academic Integrity Policy.

Part I: Do three out of four problems. If you attempt all four problems, indicate which one is not to be graded. Support your claims.

1. Suppose that z is a complex number such that for any $x \in \mathbb{R}$ the equality

$$
\begin{equation*}
|z+x|=|z-x| \tag{1}
\end{equation*}
$$

holds. Prove that $\operatorname{Re} z=0$.
Conversely, suppose that $\operatorname{Re} z=0$. Does it follow that (1) holds for all $x \in \mathbb{R}$? Prove your assertion.
2. Let \mathbf{x} and \mathbf{y} be two unit vectors in \mathbb{R}^{k}, that is, $|\mathbf{x}|=1$ and $|\mathbf{y}|=1$. Prove that

$$
|\mathbf{x}+\mathbf{y}|^{2}+|\mathbf{x}-\mathbf{y}|^{2}=4
$$

3. Give an example of an order on the set \mathbb{R}^{3}. Verify the order properties (trichotomy and transitivity).
4. Prove the inequality $12 \operatorname{Re} z-5 \operatorname{Im} z \leqslant 13|z|$, where z is an arbitrary complex number. Give an example of z, other than 0 , for which equality is attained.

Part II: True/False questions, 5 points each. You do not need to support your claims in this part.

5. "If the intervals $\left(a_{1}, b_{1}\right), \ldots,\left(a_{9}, b_{9}\right)$ on the real line are such that for any indices $1 \leqslant j<k \leqslant 9$ the intersection $\left(a_{j}, b_{j}\right) \cap\left(a_{k}, b_{k}\right)$ is not empty, then $\bigcap_{j=1}^{9}\left(a_{j}, b_{j}\right)$ is not empty."

True \qquad False
6. "The set of all infinite sequences $a_{1}, a_{2}, a_{3}, \ldots$ such that $a_{n} \in \mathbb{Q}$ for all $n \in \mathbb{N}$, is countable." True \qquad False \qquad

