Math 517 Project 3

Numerical solution of the wave equation
DUE 10/29
Goal: obtain a numeric approximation to the solution of the PDE $u_{t t}=c^{2} u_{x x}$ with Dirichlet boundary conditions. Observe the periodicity of solution.

Data (posted on Blackboard among the grades): propagation speed c and initial velocity v (that is, $u_{t}(x, 0)=v$, a constant).

Method: Use space step $h=0.04$ and time step $k=0.04$. Set up the x and t values so that they cover space interval $0 \leq x \leq 1$ and time interval $0 \leq t \leq 6$.

c	v	k	h								
??	??	0.04	0.04								
tlx		0.00	0.04	0.08	0.12	0.16	0.20	0.24	0.28	0.32	
											,
0.00		initial	alues	in this	row	-	-	-	-		
0.04		0.00	initial	displa	cemen	t due	initi	veloci	y....		
0.08		0.00									
0.12		0.00									
0.16		0.00			differen	ce sch	eme				
0.20		0.00									

The initial conditions are $u(x, 0)=\max (0,20 x(1-3 x))$ and $u_{t}(x, 0)=v$. The first condition is enforced by filling the row for $t=0$ with the given formula. The second is enforced by filling the second row $(t=k)$ with $u(x, k)=u(x, 0)+k v$.

The boundary conditions are $u(0, t)=0$ and $u(1, t)=0$. Enforce them by filling appropriate columns with zeros.

Use the difference scheme

$$
U_{j}^{n+1}=2 U_{j}^{n}-U_{j}^{n-1}+\frac{c^{2} k^{2}}{h^{2}}\left(U_{j-1}^{n}-2 U_{j}^{n}+U_{j+1}^{n}\right)
$$

to calculate the solution. (Here U_{j}^{n} is the approximate value of u after j space steps and n time steps from the upper left corner $x=0, t=0$.) Note that $k^{2} / h^{2}=1$ due to $k=h$.

To observe the periodicity of solution, plot its values with $x=0.44$ and t varying from 0 to 6 . (These values occupy a certain column on the spreadsheet). Determine approximate value of period T from this plot. Then plot $u(x, 0)$ and $u(x, T)$ together.

Report your observations:
(a) the observed period T of the solution
(b) how T compares to the theoretical period $2 / c$
(c) the degree of similarity between $u(x, 0)$ and $u(x, T)$

Submit the spreadsheet on Blackboard by the end of Tuesday 10/29.

