
MATH 517 PROJECT 2: DIFFUSION EQUATION, EFFECT OF BOUNDARY CONDITIONS

Turn in on Blackboard by the end of Sunday 9/28.

Goal: obtain a numeric approximation to the solution of the PDE ut = kuxx with Dirichlet
boundary condition at one end and Neumann boundary condition at another.

Recommended software: Matlab (available in SU computer clusters) or its free alternative Scilab
(available for download from www.scilab.org).

Answer the following questions, based on output:

(1) How does the Dirichlet boundary condition (immediate escape) affect the solution?
(2) How does the Neumann boundary condition (no escape) affect the solution?
(3) What happens if you change the time step ∆t to a number such that 2k∆t = (∆x)2?
(4) What happens if you change the time step ∆t to a number such that 2k∆t > (∆x)2?

You can include the answers as comments when submitting the file on Blackboard.

Data (posted on Blackboard among the grades): diffusion coefficient k and space step ∆x.

Method: First, choose a value of time step ∆t so that 2k∆t < (∆x)2. Don’t go for extremely
small values of ∆t, or the computations will take very long.

Set up the matrix of u values (so far, filled with zero), computing its size using the time and
space steps, similar to Project 1.

The solution should be on space interval −1 ≤ x ≤ 1 and time interval 0 ≤ t ≤ 1.

For the initial values of u, only one entry of the matrix should be assigned a nonzero value: put
1/∆x in the entry that corresponds to x = 0 and t = 0. That entry is U(1, 1 + 1/∆x); I use capital
letter U for the matrix to distinguish it from the function u.

Use the boundary conditions u = 0 when x = −1 and ux = 0 when x = 1. The Dirichlet
condition u = 0 when x = −1 is enforced simply by leaving all entries U(i, 1) equal to zero in the
process of calculation. To enforce the Neumann condition ux = 0 when x = 1, we need another
way: see below.

For most of the matrix, the difference scheme

U(i + 1, j) = U(i, j) +
c∆t
(∆x)2 (U(i, j − 1)− 2U(i, j) + U(i, j + 1))

is used to calculate the solution. Exceptions: this formula should not be applied when j is at the
right edge of the matrix, since j + 1 would go out of bounds. Instead, replace j + 1 by j − 1 in this
case: this expresses the Neumann boundary condition:

U(i + 1, j) = U(i, j) +
c∆t
(∆x)2 (U(i, j − 1)− 2U(i, j) + U(i, j − 1))
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Sample elements of program. The set up of parameters such as timeStep, numSpaceSteps, etc,
is as in Project 1, except of course the numbers are different. You will also need to define k = (the
diffusion coefficient), and impose the initial condition as described above. Then run the double
loop that calculates the solution using a difference scheme:

for i = 1 : numTimeSteps-1

for j = 2 : numSpaceSteps-1

U(i+1,j) = U(i,j) + k*timeStep/(spaceStep)^2*(U(i,j-1)-2*U(i,j)+U(i,j+1));

end

j = numSpaceSteps;

U(i+1,j) = U(i,j) + k*timeStep/(spaceStep)^2*(U(i,j-1)-2*U(i,j)+U(i,j-1));

end

Finally, plot the solution. To avoid clutter, the loop below plots every 100th time step. Also, the
very first rows have quite large values of u, which would distort the scale if they were shown. For
this reason plotting begins only with 100th step of calculation:

hold on ..... omit this if using Scilab

for i = 1 : numTimeSteps/100

plot(a:spaceStep:b, U(100*i,:));

pause(.5) ..... replace with xpause(.5e6) if using Scilab

end


