
MATH 517 PROJECT 1: BURGERS’ EQUATION, SHOCK AND RAREFACTION

Turn in on Blackboard by the end of Monday 9/8.

Goal: Solve the Burgers equation ut = −uux numerically, using the initial conditions from the
written homework:

u(x, 0) =

{
4, −3 < x < 3,
0 otherwise

Recommended software: Matlab (available in SU computer clusters) or its free alternative Scilab
(available for download from www.scilab.org).

Answer the following questions, based on output:

(1) When (approximately) does the rarefaction wave catches up with the shock wave?
(2) What happens to the maximum of function u after the catch-up moment?
(3) What (approximately) is the speed of shock propagation initially and at the end of compu-

tation?

You can include the answers as comments when submitting the file on Blackboard.

RELEVANT MATLAB / SCILAB INFORMATION

Commands can be entered directly into command window, in which case they are executed one
by one. You can end a command with semicolon ; to suppress its output. Usually, a sequence of
commands is put together into a script, created with the built-in editor (from which the script can
be executed). See the video tutorials posted on Blackboard.

x = a:h:b creates a row vector (array of numbers) whose components begin with a and increase
in multiples of h, until they exceed b. For example, x = 1:3:11 assigns the vector [1,4,7,10] to
x.

u = zeros(m,n) creates a matrix with m rows and n columns, filled with zeros.

u(i,:) returns the row number i of the matrix. Similarly, u(:,j) is the column number j.

plot(x,y) plots x against y, where x and y must be vectors of the same size.

2

Sample program. First, set parameters:

a = -5; -- left end of space interval

b = 25; -- right end of space interval

t = 15; -- end of time interval (it begins with 0)

timeStep = 0.01; -- time resolution

spaceStep = 0.1; -- space resolution

Calculate the size of matrix required to hold function u, and create the matrix:

numTimeSteps = t/timeStep + 1;

numSpaceSteps = (b-a)/spaceStep + 1;

u = zeros(numTimeSteps, numSpaceSteps);

Impose the initial and boundary conditions (boundary: 0 velocity at the left edge).

for j = ((-3-a)/spaceStep) : ((3-a)/spaceStep)

u(1,j) = 4;

end

for i = 1 : numTimeSteps

u(i,1) = 0;

end

Run the double loop that calculates the solution using an appropriate difference scheme.

for i = 1 : numTimeSteps-1

for j = 2 : numSpaceSteps

u(i+1,j) = ... most interesting part is here (see the class notes)

end

end

Plot the solution. To avoid clutter, the loop below plots every 50th time step. What is the time
interval between the consecutive plots? You’ll need this to answer the questions.

hold on omit this if using Scilab

for i = 1 : numTimeSteps/50

plot(a:spaceStep:b, u(1+50*(i-1),:))

pause(.5) replace with xpause(.5e6) if using Scilab

end

