In this project you will compare the performance of two numerical methods:

- the Euler method, which you used in Project 1
- the RK2 method (abbreviation of "the Runge-Kutta method of second order").

The performance of the numerical methods will be compared on the equation

$$
y^{\prime}=r y \quad \text { with initial condition } y(0)=y_{0}
$$

Here $r=1+0.1 *$ first digit of your SUID, and $y_{0}=10+$ second digit of your SUID.
For example, my SUID begins with 79, which means that for me $r=1.7$ and $y_{0}=19$. Therefore, I will work with the equation $y^{\prime}=1.7 y$ and initial condition $y(0)=19$. This equation is easy to solve exactly, and we already know the solution: $y=y_{0} e^{r t}$, which in my case is $y=19 e^{1.7 t}$.

Goals of the project

(1) Find the exact values of y at $t=0.05,0.10,0.15, \ldots, 1.95,2$ by solving the equation as above
(2) Find approximate values of y at $t=0.05,0.10,0.15, \ldots, 1.95,2$ using the Euler method
(3) Find approximate values of y at $t=0.05,0.10,0.15, \ldots, 1.95,2$ using the RK2 method
(4) Compare the accuracy of the Euler and RK2 methods.

The Euler method

Since $y(0)$ is known, we can find $y^{\prime}(0)$ from the equation. Then we calculate

$$
y(0.05) \approx y(0)+0.05 y^{\prime}(0)
$$

This is reasonable because $y^{\prime}(0)$ is the rate of change of y at time 0 , so we can expect y to change by approximately $0.05 y^{\prime}(0)$ over the interval from 0 to 0.05 .

Now that we have $y(0.05)$, the process repeats. We find $y^{\prime}(0.05)$ from the equation, and then

$$
y(0.10) \approx y(0.05)+0.05 y^{\prime}(0.05)
$$

Again, this is reasonable because $y^{\prime}(0.05)$ is the rate of change of y at time 0.05 , and we expect y approximately $0.05 y^{\prime}(0.05)$ over the interval from 0.05 to 0.10 .

The RK2 Method

The Euler's method approximates the change of y over the interval such as $[0,0.05]$ using the value of y^{\prime} only at the left endpoint of this interval. The RK2 method uses the average of y^{\prime} at both endpoints. Thus, the basic idea is to take

$$
y(0.05) \approx y(0)+0.05 \frac{y^{\prime}(0)+y^{\prime}(0.05)}{2}
$$

But to use this formula, we need to find $y^{\prime}(0.05)$, and for that we need $y(0.05) \ldots$

The idea is to tentatively predict $y(0.05)$ using Euler's methid

$$
y(0.05) \approx y(0)+0.05 y^{\prime}(0)
$$

and use this prediction to calculate $y^{\prime}(0.05)$. Then we take

$$
y(0.05) \approx y(0)+0.05 \frac{y^{\prime}(0)+y^{\prime}(0.05)}{2}
$$

correcting the original prediction. Then the process repeats.
For example, with my numbers I would have $y^{\prime}(0)=1.7 \cdot 19=32.3$, which predicts $y(0.05) \approx$ $19+0.05 \cdot 32.3 \approx 20.62$. On the basis of this prediction, $y^{\prime}(0.05) \approx 1.7 \cdot 20.62=35.05$. Using the average $\frac{y^{\prime}(0)+y^{\prime}(0.05)}{2} \approx 33.67$ instead of just $y^{\prime}(0)$, I arrive at a more precise value for $y(0.05)$, namely $19+0.05 \cdot 33.67 \approx \mathbf{2 0 . 6 8}$. (The exact solution gives $y(0.05)=19 e^{1.7 \cdot 0.05} \approx \mathbf{2 0 . 6 8 5 6} \ldots$)

Technical details

I recommend using spreadsheet software, as for Project 1.
To begin, download the template at goo.gl/Q2XcX (or make your own copy in Google Drive).
Column A contains all necessary values of t. Columns B is for the exact solution. For example, my cell B3 would have
$=19 * \operatorname{EXP}(1.7 * \mathrm{~A} 3)$
Columns D and E implement the Euler method, just as in Project 1. In Column F you should calculate the error of this method, which is the absolute value of the difference between exact values in column B and approximation in column D. Like this:
=ABS (B3-D3)
Columns H through L implement the RK2 method. For example, cell H3 contains the initial value $y(0)$ (mine is 19, you should use yours). Cell I3 calculates $y^{\prime}(0)$ according to the differential equation. Then cell J3 makes a prediction of $y(0.05)$:
$=$ H3 + I3 $* 0.05$
Cell K3 calculates $y^{\prime}(0.05)$ according to the differential equation, using the prediction in cell J3. Finally, L3 takes the average of two values of the derivative
$=($ I3 + K3 $) / 2$
and this is what we use to move to the next row, by filling H 4 with the formula $=\mathrm{H} 3+\mathrm{L} 3 * 0.05$

In column M you should calculate the error of the RK2 method, which is the absolute value of the difference between exact values in column B and approximation in column H .

Finally, answer the questions in Column O.
Submit your Project 2 spreadsheet on Blackboard by the end of Wednesday, February 13.

